• 제목/요약/키워드: Target Location Error

검색결과 93건 처리시간 0.025초

Small Target Detecting and Tracking Using Mean Shifter Guided Kalman Filter

  • Ye, Soo-Young;Joo, Jae-Heum;Nam, Ki-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권4호
    • /
    • pp.187-192
    • /
    • 2013
  • Because of the importance of small target detection in infrared images, many studies have been carried out in this area. Using a Kalman filter and mean shift algorithm, this study proposes an algorithm to track multiple small moving targets even in cases of target disappearance and appearance in serial infrared images in an environment with many noises. Difference images, which highlight the background images estimated with a background estimation filter from the original images, have a relatively very bright value, which becomes a candidate target area. Multiple target tracking consists of a Kalman filter section (target position prediction) and candidate target classification section (target selection). The system removes error detection from the detection results of candidate targets in still images and associates targets in serial images. The final target detection locations were revised with the mean shift algorithm to have comparatively low tracking location errors and allow for continuous tracking with standard model updating. In the experiment with actual marine infrared serial images, the proposed system was compared with the Kalman filter method and mean shift algorithm. As a result, the proposed system recorded the lowest tracking location errors and ensured stable tracking with no tracking location diffusion.

Implementation of 3D Moving Target-Tracking System based on MSE and BPEJTC Algorithms

  • Ko, Jung-Hwan;Lee, Maeng-Ho;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • 제5권1호
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, a new stereo 3D moving-target tracking system using the MSE (mean square error) and BPEJTC (binary phase extraction joint transform correlator) algorithms is proposed. A moving target is extracted from the sequential input stereo image by applying a region-based MSE algorithm following which, the location coordinates of a moving target in each frame are obtained through correlation between the extracted target image and the input stereo image by using the BPEJTC algorithm. Through several experiments performed with 20 frames of the stereo image pair with $640{\times}480$ pixels, we confirmed that the proposed system is capable of tracking a moving target at a relatively low error ratio of 1.29 % on average at real time.

탄도 및 지형 특성을 고려한 포병 표적지 크기 결정 방안 연구 (Research on Artillery Target Size Determination Method Considering Ballistic and Terrain Characteristics)

  • 김주희;성기은
    • 한국군사과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.355-363
    • /
    • 2024
  • This study proposes a method for determining the optimal target size for an artillery range considering ballistics and environmental conditions. To this end, the size of the probable error of each type of ammunition and charge determined during shooting were considered, and the effect of the firing position and target terrain characteristics on the target size was analyzed. In conclusion, the size of the target increased as the range increased, and a larger target size was required for the DPICM than for the general high explosive. Accordingly, the optimal target size must be determined by considering various factors such as topographical characteristics, shooting position location, and shooting range safety standards.

One-Dimensional Search Location Algorithm Based on TDOA

  • He, Yuyao;Chu, Yanli;Guo, Sanxue
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.639-647
    • /
    • 2020
  • In the vibration target localization algorithms based on time difference of arrival (TDOA), Fang algorithm is often used in practice because of its simple calculation. However, when the delay estimation error is large, the localization equation of Fang algorithm has no solution. In order to solve this problem, one dimensional search location algorithm based on TDOA is proposed in this paper. The concept of search is introduced in the algorithm. The distance d1 between any single sensor and the vibration target is considered as a search variable. The vibration target location is searched by changing the value of d1 in the two-dimensional plane. The experiment results show that the proposed algorithm is superior to traditional methods in localization accuracy.

Extended Fitts' Law for Three-Dimensional Environment

  • Cha, Yeon-Joo;Myung, Ro-Hae
    • 대한인간공학회지
    • /
    • 제29권6호
    • /
    • pp.861-868
    • /
    • 2010
  • This study explored an extended three-dimensional Fitts' law that is more suited for the pointing task than the conventional Fitts' law. The experiments were conducted under the manipulation of the distance to the target, size of the target, and direction of the target's location that can be described by two angles, $\theta1$ and $\theta2$. Considering the starting point as the center of coordinates, $\theta1$ is the angle between the positive z-axis and the target location and $\theta2$ is the angle between the positive y-axis and the projected target location on the x-y plane. From the experimental results, we confirmed that all four variables significantly affect the movement time. As we extended the index of difficulty of the conventional Fitts' model by incorporating $\theta1$ and $\theta2$, we established an extended Fitts' model that showed better accordance with the empirical data than the conventional Fitts' model and 3D Fitts' law of Murata and Iwase, in terms of the $r^2$ and the standard error of the residual between the measured movement time and the predicted value.

스마트폰을 이용한 물체의 3차원 위치 추정 기법 (A Three Dimensional Object Localization Scheme using A Smartphone)

  • 권오흠;정명환;송하주
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1200-1207
    • /
    • 2017
  • Sensors in a smartphone can be used to measure various physical quantities. In this paper, we propose an object localization scheme in a three dimenstional using a smart phone. The proposed scheme estimates the location of an object by observing it from several different points. The direction to the target object and the locations of the observation points are collected at each observation point using the location sensor and the orientation sensor in the smartphone. Based on these observations, the proposed scheme derives three dimensional line of sight vectors and estimates the location of the target object that minimizes the estimation error. We implemented the proposed scheme on an Android smartphone and tested its performance by estimating the height of a building and characteristics of the proposed approach.

Iterative Calculation을 이용한 UWB 위치측정에서의 오차감소 기법 (Location Error Reduction method using Iterative Calculation in UWB system)

  • 장성진;황재호;최낙현;김재명
    • 대한전자공학회논문지TC
    • /
    • 제45권12호
    • /
    • pp.105-113
    • /
    • 2008
  • 유비쿼터스 사회에서는 사용자의 요구를 충족시키기 위하여 사용자가 갖고 있는 기기에 대한 정밀한 위치측정을 필요로 한다. 위치 측정은 송수신기간에 신호의 전송을 기반으로 한 거리측정을 통해 이뤄지기 때문에 위치측정의 오차는 거리측정의 오차로부터 발생한다. 신호가 전송되는 기기 간에 장애물이 존재하게 되면 LoS(Line of Sight)신호 성분이 줄어들게 되어 NLoS(Non-Line of Sight) 채널이 발생하게 되고 정확한 시점에서 신호를 검출할 수 없게 되어 거리오차가 발생하게 된다. 일반적인 위치측정 알고리즘은 참조기기(Reference Device)의 거리측정 성능에 관계없이 참조기기와 목표기기(Target Device)간의 거리측정 값을 위치 계산에 그대로 사용하기 때문에 거리측정 값으로부터 발생되는 오차가 위치 계산에 더해지게 된다. 따라서 본 논문에서는 각 참조기기가 속해 있는 채널특성을 판별하고 NLoS채널로부터 계산된 거리와 LoS채널로부터 계산된 거리를 다른 비율로 적용하여 위치측정의 오차를 줄이는 Iterative Calculation 기법을 제안한다. 참조기기는 수신된 신호의 Kurtosis, Mean, Excess Delay, RMS Delay spread를 통해 NLoS와 LoS 채널을 구분한다. 이를 통해 구분된 채널마다 각기 다른 비율로 랜덤 거리를 계산된 거리에 더하여 위치를 계산하는 것을 반복적으로 수행한 뒤 평균값을 계산하여 확률적으로 존재할 가능성이 높은 목표기기의 위치를 찾아감으로써 NLoS채널로부터 계산된 거리오차가 위치측정에 미치는 영향을 줄이는 방법을 제안하고 시뮬레이션을 통해 기존의 방식과 비교했을 때 성능향상을 확인하였다.

지구 자기장 기반 지문인식 및 추측 항법을 결합한 실시간 실내 위치정보 서비스 (Real Time Indoor Localization Using Geomagnetic Fingerprinting and Pedestrian Dead Reckoning)

  • 장호준;최린
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권4호
    • /
    • pp.210-216
    • /
    • 2017
  • 본 논문은 지구 자기장 기반의 지문인식과 추측 항법을 사용하여 실시간으로 실내 위치정보 서비스를 사용자에 제공할 수 있는 알고리즘 및 솔루션을 제안한다. 지자기장 값의 변화 추이와 사전에 입력된 지자기장 값의 유사도를 판별하여 초기 위치를 추정하였으며 초기 위치에서 지자기장 지문인식과 추측 항법 상호 보정을 통해 보다 연속적인 이동 위치 추정을 함으로서 일부 5m가 넘어가는 지구 자기장의 최대 오차와 추측 항법의 누적 오차를 개선하였다. 그 뿐만 아니라 본 기법은 기존 지문인식 방법과는 달리 무선랜 AP등 인프라 구축을 제거하여 보다 경제적인 서비스 제공을 가능하게 한다.

Measurement-based AP Deployment Mechanism for Fingerprint-based Indoor Location Systems

  • Li, Dong;Yan, Yan;Zhang, Baoxian;Li, Cheng;Xu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1611-1629
    • /
    • 2016
  • Recently, deploying WiFi access points (APs) for facilitating indoor localization has attracted increasing attention. However, most existing mechanisms in this aspect are typically simulation based and further they did not consider how to jointly utilize pre-existing APs in target environment and newly deployed APs for achieving high localization performance. In this paper, we propose a measurement-based AP deployment mechanism (MAPD) for placing APs in target indoor environment for assisting fingerprint based indoor localization. In the mechanism design, MAPD takes full consideration of pre-existing APs to assist the selection of good candidate positions for deploying new APs. For this purpose, we first choose a number of candidate positions with low location accuracy on a radio map calibrated using the pre-existing APs and then use over-deployment and on-site measurement to determine the actual positions for AP deployment. MAPD uses minimal mean location error and progressive greedy search for actual AP position selection. Experimental results demonstrate that MAPD can largely reduce the localization error as compared with existing work.

CRT 표시장치에서 두 형태의 크기-내삽 추정 방법의 비교 연구 : 상사자극-계수 반응과 계수 자극-상사반응 (Comparison of Two Methods for Size-interpolation on CRT Display : Analog Stimulus-Digital Response Vs. Digital Stimulus-Analog Response)

  • 노재호
    • 산업기술연구
    • /
    • 제14권
    • /
    • pp.127-140
    • /
    • 1994
  • This study is concerned with the accuracy and the patterns when different methods was used in interpolation task. Although 3 methods employed the same modality for input (visual) and for output (manual responding), they differed in central processing, which method 1 is relatively more tendency of verbal processing, method 2 is realtively more tendency of spatial processing and method 3 needed a number of switching code (verbal/spatial) performing task. Split-plot design was adopted, which whole plot consisted of methods (3), orientations (horizon, vertical), base-line sizes (300, 500, 700 pixels) and split plot consisted of target locations (1-99). The results showed the anchor effect and the range effect. Method 2, method 3 and method 1 that order was better accuracy. ANOVA showed that the accuracy was significantly influenced by the method, the location of target, and its interactions ($method{\times}location$, $size{\times}location$). Analysis of error data, response time and frequency of under, just, over estimate indicated that a systematic error pattern was made in task and methods changed not only the performance but also the pattern. The results provided support for the importance of the multiple resources theory in accounting for S-C-R compatibility and task performance. They are discussed in terms of multiple resources theory and guidelines for system design is suggested by the S-C-R compatibility.

  • PDF