• Title/Summary/Keyword: Target Ion Extract

Search Result 3, Processing Time 0.021 seconds

Simultaneous Analyses for Trace Multi-Odorous and Volatile Organic Compounds in Gas using a Triple-bed Adsorbent Tube (Triple-bed Adsorbent Tube를 이용한 가스상 극미량 복합 악취 및 휘발성 유기화합물의 동시 분석)

  • Seo, Yong Soo;Lee, Jea Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.244-252
    • /
    • 2010
  • The objective of this study is to assess feasibility of simultaneous analysis for trace multi-components odorous and volatile organic compounds using a Triple-bed adsorbent tube with a thermal desorber and GC-MS. Triple-bed adsorbent tube is 3 bed packed Tenax-TA with small amount of Carbopack B and Carbosieve SIII in order of adsorption strength in a tube. The operating conditions of GC-MS was possibly able to and effectively detect high volatile and low molecular weight compounds at the mass range of 20~350 m/z using a below impurity 1ppm of Helium carrier gas, of which quantitatively analyzed by target ion extracts. According to the experiment, $C_1{\sim}C_5$ of 14 components; sulfur containing compounds(2), ketones(2), alcohols(4) and aldehydes(6) were simultaneously analyzed with recoveries of 99%, and good repeatability and linearity. High volatile and low molecular weight compounds such as methyl alcohol and acetaldehyde can be safely quantified with high recovery at a condition of 50mL/min of flow rate, below 2L of adsorption volume, and 45% of relative humidity. Target ion extract can also simultaneously quantify multicomponents with odorous and volatile organic compounds in an occasion of piled up two peaks.

Studies on Preconcentration and Electrophoretic Mobility of Fluorescent Dyes Depending on Flow Velocity and Concentration in the Electromembrane System (전기막 시스템에서 유속과 농도에 따른 형광염료의 농축 및 전기영동 이동도에 관한 연구)

  • Minsung, Kim;Bumjoo, Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.45-50
    • /
    • 2023
  • Microfluidic preconcentration technologies, which collect or extract low-abundance analytes in a specific location, have been spotlighted in various applications such as medical and bio-engineering. Here, we conducted extensive studies on the variables to be considered when concentrating target samples based on electrophoresis in an electromembrane system utilizing an ion exchange membrane. Using negatively charged Alexa Fluor 488 and positively charged Rhodamine 6G as fluorescent dyes, we examined the effects of flow velocity of the main channel, channel electrolyte concentration, and applied voltage on sample preconcentration. As a result, it was found that the preconcentration of the target sample occurs much better when the flow velocity is slow and the concentration of the main channel containing the sample is high, given that the channel concentration ratio (main and buffer) is constant. In addition, based on the experimental data acquired in this study, the electrophoretic mobility values of Alexa Fluor 488 and Rhodamine 6G were experimentally calculated and compared.

Analysis of Fungicide Prochloraz in Platycodi Radix by GC-ECD (GC-ECD를 이용한 한약재 길경(Platycodi Radix) 중 살균제 Prochloraz의 분석)

  • Oh, Gyeong-Seok;Yoon, Myung-sub;Yang, Seung-Hyun;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.353-358
    • /
    • 2021
  • BACKGROUND: Prochloraz has been widely used as an imidazole fungicide on fruits and vegetables in Korea. Analytical approaches to evaluate prochloraz residues in herbal medicine are required for their safety management. In this study, we developed a GC-ECD method for quantitative determination of prochloraz in Platycodi Radix. The metabolite 2,4,6-trichlorophenol (2,4,6-T) was used as a target compound to evaluate total prochloraz residues as it is categorized to a representative residue definition of prochloraz. All residues containing 2,4,6-T were converted to 2,4,6-T and subjected to GC-ECD. METHODS AND RESULTS: In order to verify the applicability, the method was optimized for determining prochloraz and it metabolite 2,4,6-T in Platycodi Radix. Prochloraz and its metabolite 2,4,6-T residuals were extracted using acetone. The extract was diluted with and partitioned directly into dichloromethane to remove polar co-extractives in the aqueous phase. The extract was decomposed to 2,4,6-T, and then the partitioned ion-associate was finally purified by optimized aminopropyl solid-phase extraction (SPE). The limits of quantitation of the method (MLOQs) were 0.04 mg/kg and 0.02 mg/kg, respectively for prochloraz and 2,4,6-T, considering the maximum residue level (MRL) of prochloraz as 0.05 mg/kg in Platycodi Radix. Recovery tests were carried out at two levels of concentration (MLOQ, 10 MLOQ) and resulted in good recoveries (82.1-89.7%). Good reproducibilities were obtained (coefficient of variation < 2.8%), and the linearities of calibration curves were reasonable (r2 > 0.9986) in the range of 0.005-0.5 ㎍/mL. CONCLUSION(S): The method developed in this study was successfully validated to meet the guidelines required for quantitative determination of pesticides in herbal medicine. Thus, the method could be useful to monitor prochloraz institutionally in herbal medicine.