DOI QR코드

DOI QR Code

Studies on Preconcentration and Electrophoretic Mobility of Fluorescent Dyes Depending on Flow Velocity and Concentration in the Electromembrane System

전기막 시스템에서 유속과 농도에 따른 형광염료의 농축 및 전기영동 이동도에 관한 연구

  • Minsung, Kim (Department of Future Convergence Engineering, Kongju National University) ;
  • Bumjoo, Kim (Department of Future Convergence Engineering, Kongju National University)
  • 김민성 (공주대학교 미래융합공학과) ;
  • 김범주 (공주대학교 미래융합공학과)
  • Received : 2022.12.22
  • Accepted : 2023.01.05
  • Published : 2023.02.10

Abstract

Microfluidic preconcentration technologies, which collect or extract low-abundance analytes in a specific location, have been spotlighted in various applications such as medical and bio-engineering. Here, we conducted extensive studies on the variables to be considered when concentrating target samples based on electrophoresis in an electromembrane system utilizing an ion exchange membrane. Using negatively charged Alexa Fluor 488 and positively charged Rhodamine 6G as fluorescent dyes, we examined the effects of flow velocity of the main channel, channel electrolyte concentration, and applied voltage on sample preconcentration. As a result, it was found that the preconcentration of the target sample occurs much better when the flow velocity is slow and the concentration of the main channel containing the sample is high, given that the channel concentration ratio (main and buffer) is constant. In addition, based on the experimental data acquired in this study, the electrophoretic mobility values of Alexa Fluor 488 and Rhodamine 6G were experimentally calculated and compared.

마이크로 유체 시스템을 활용한 농축 기술은 저과다 분석물을 특정 위치에 모으거나 추출하는 기술로, 의료 및 바이오 분야를 포함한 다양한 분야에서 필수적인 기술로 각광받고 있다. 본 연구에서는 이온교환막을 활용한 전기막 시스템(electromembrane system)에서 전기영동(electrophoresis) 현상을 이용해 타겟 샘플을 농축할 때 고려해야 할 변수에 대한 광범위한 연구를 수행하였다. 가시화가 용이한 형광염료로 음전하를 띄는 Alexa Fluor 488과 양전하를 띄는 Rhodamine 6G을 샘플로 사용하여, 타겟 샘플이 포함된 메인 채널의 유속과 메인/버퍼 채널의 농도, 전압 등이 샘플 농축에 어떻게 영향을 끼치는지 알아보았다. 실험 결과, 메인/버퍼 채널 농도비가 같을 경우, 유속이 느릴수록, 샘플이 포함된 메인 채널의 농도가 높을수록, 타겟 샘플의 농축이 훨씬 더 잘 일어난다는 사실을 알 수 있었다. 또한 본 연구를 통해 Alexa Fluor 488과 Rhodamine 6G의 전기영동 이동도 값을 실험적으로 계산하여 비교하였다.

Keywords

Acknowledgement

본 논문은 2022년도 정부(과학기술정보통신부, 교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 개인기초연구(No. 2020R1F1A1075999)와 지자체-대학협력기반 지역혁신 사업(2021RIS-004)의 결과임.

References

  1. C. C. Lin, J. L. Hsu, and G. B. Lee, Sample preconcentration in microfluidic devices, Microfluid. Nanofluidics, 10, 481-511 (2011). https://doi.org/10.1007/s10404-010-0661-9
  2. J. A. Wells, and H. Swerdlow, Fluidic Preconcentrator Device for Capillary Electrophoresis of Proteins, Anal. Chem., 75, 5207-5212 (2003). https://doi.org/10.1021/ac0300892
  3. S. Song, A. K. Singh, and B. J. Kirby, Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips, Anal. Chem., 76, 4589-4592 (2004). https://doi.org/10.1021/ac0497151
  4. B. Jung, R. Bharadwaj, and J. G. Santiago, On-chip millionfold sample stacking using transient isotachophoresis, Anal. Chem., 78, 2319-2327 (2006). https://doi.org/10.1021/ac051659w
  5. D. Bottenus, T. Z. Jubery, Y. Ouyang, W. J. Dong, P. Dutta, and C. F. Ivory, 10000-fold concentration increase of the biomarker cardiac troponin l in a reducing union microfluidic chip using cationic isotachophoresis, Lab Chip, 11, 890-898 (2011). https://doi.org/10.1039/c0lc00490a
  6. J. Shim, P. Dutta, and C. F. Ivory, Effects of ampholyte concentration on protein behavior in on-chip isoelectric focusing, Electrophoresis, 29, 1026-1035 (2008). https://doi.org/10.1002/elps.200700683
  7. J. C. Niu, T. Zhou, L. L. Niu, Z. S. Xie, F. Fang, F. Q. Yang, and Z. Y. Wu, Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis, Anal. Bioanal. Chem., 410, 1689-1695 (2018). https://doi.org/10.1007/s00216-017-0809-5
  8. S. J. Kim, Y. A. Song, and J. Han, Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications, Chem. Soc. Rev., 39, 912-922, (2010). https://doi.org/10.1039/b822556g
  9. Y. C. Wang, A. L. Stevens, and J. Han, Million-fold preconcentration of proteins and peptides by nanofluidic filter, Anal. Chem., 77, 4293-4299 (2005). https://doi.org/10.1021/ac050321z
  10. J. H. Lee, Y. A. Song, and J. Han, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane, Lab Chip, 8, 596-601 (2008). https://doi.org/10.1039/b717900f
  11. M. Kim and T. Kim, Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration, Analyst, 138, 6007-6015 (2013). https://doi.org/10.1039/c3an00965c
  12. L. F. Cheow and J. Han, Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electro-kinetic concentration, Anal. Chem., 83, 7086-7093 (2011). https://doi.org/10.1021/ac201307d
  13. J. Choi, S. Baek, H. C. Kim, J. H. Chae, Y. Koh, S. W. Seo, H. Lee, and S. J. Kim, Nanoelectrokinetic selective preconcentration based on ion concentration polarization, Biochip J., 14, 100-109 (2020). https://doi.org/10.1007/s13206-020-4109-3
  14. R. Kwak, S. J. Kim, and J. Han, Continuous-flow biomolecule and cell concentrator by ion concentration polarization, Anal. Chem., 83, 7348-7355 (2011). https://doi.org/10.1021/ac2012619
  15. Y. Cho, J. Yoon, D. W. Lim, J. Kim, J. H. Lee, and S. Chung, Ion concentration polarization for pre-concentration of biological samples without ph change, Analyst, 141, 6510-6514 (2016). https://doi.org/10.1039/c6an02152b
  16. S. Kim, H. Nam, E. Lee, J. W. Huh, Y. M. Kim, H. Jeon, and G. Lim, Ion concentration polarization-based multifunctional microfluidic device for analysis of intracellular components, Sens. Actuators B Chem., 371, 132576 (2022).
  17. W. Kim, S. Park, K. Kim, and S. J. Kim, Experimental verification of simultaneous desalting and molecular preconcentration by ion concentration polarization, Lab Chip, 17, 3841-3850 (2017). https://doi.org/10.1039/C7LC00857K
  18. D. Kim, S. Ihm, S. Park, Y. Yu, and R. Kwak, Concentric ion concentration polarization desalination for efficient en-bloc pre-concentration and desalination, Desalination, 499, 114810 (2021).
  19. S. Kim, M. Kim, S. Kim, B. Kim, and G. Lim, Continuous separation of submicron-scale oil droplets in aqueous electrolyte by electrophoretic migration, Sens. Actuators B Chem., 344, 130145 (2021).
  20. J. Wuzhang, Y. Song, R. Sun, X. Pan, and D. Li, Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions, Electrophoresis, 36, 2489-2497 (2015). https://doi.org/10.1002/elps.201500062
  21. B. Kim, R. Kwak, H. J. Kwon, V. S. Pham, M. Kim, B. A. Anzi, G. Lim, and J. Han, Purification of high salinity brine by multi-stage ion concentration polarization desalination, Sci. Rep., 6, 31850 (2016).
  22. B. Kim, S. Choi, V. S. Pham, R. Kwak, and J. Han, Energy efficiency enhancement of electromembrane desalination systems by local flow redistribution optimized for the asymmetry of cation/ anion diffusivity, J. Membr. Sci., 524, 280-287 (2017). https://doi.org/10.1016/j.memsci.2016.11.046
  23. J. Jang, M. Kim, J. Shin, D. Yang, M. Kim, and B. Kim, Experimental study on ion transport in microfluidic electrodialysis using partially masked ion exchange membranes, Micromachines, 13, 356 (2022).
  24. D. Milanova, R. D. Chambers, S. S. Bahga, and J. G. Santiago, Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis, Electrophoresis, 32, 3286-3294 (2011). https://doi.org/10.1002/elps.201100210
  25. T. K. Khurana and J. G. Santiago, Sample zone dynamics in peak mode isotachophoresis, Anal. Chem., 80, 6300-6307 (2008). https://doi.org/10.1021/ac800792g