• Title/Summary/Keyword: Target Identification

Search Result 729, Processing Time 0.028 seconds

Bayesian in-situ parameter estimation of metallic plates using piezoelectric transducers

  • Asadi, Sina;Shamshirsaz, Mahnaz;Vaghasloo, Younes A.
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.735-751
    • /
    • 2020
  • Identification of structure parameters is crucial in Structural Health Monitoring (SHM) context for activities such as model validation, damage assessment and signal processing of structure response. In this paper, guided waves generated by piezoelectric transducers are used for in-situ and non-destructive structural parameter estimation based on Bayesian approach. As Bayesian approach needs iterative process, which is computationally expensive, this paper proposes a method in which an analytical model is selected and developed in order to decrease computational time and complexity of modeling. An experimental set-up is implemented to estimate three target elastic and geometrical parameters: Young's modulus, Poisson ratio and thickness of aluminum and steel plates. Experimental and simulated data are combined in a Bayesian framework for parameter identification. A significant accuracy is achieved regarding estimation of target parameters with maximum error of 8, 11 and 17 percent respectively. Moreover, the limitation of analytical model concerning boundary reflections is addressed and managed experimentally. Pulse excitation is selected as it can excite the structure in a wide frequency range contrary to conventional tone burst excitation. The results show that the proposed non-destructive method can be used in service for estimation of material and geometrical properties of structure in industrial applications.

Chemical kinomics: a powerful strategy for target deconvolution

  • Kim, Do-Hee;Sim, Tae-Bo
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.711-719
    • /
    • 2010
  • Kinomics is an emerging and promising approach for deciphering kinomes. Chemical kinomics is a discipline of chemical genomics that is also referred to as "chemogenomics", which is derived from chemistry and biology. Chemical kinomics has become a powerful approach to decipher complicated phosphorylation-based cellular signaling networks with the aid of small molecules that modulate kinase functions. Moreover, chemical kinomics has played a pivotal role in the field of kinase drug discovery as it enables identification of new molecular targets of small molecule kinase modulators and/or exploitation of novel functions of known kinases and has also provided novel chemical entities as hit/lead compounds. In this short review, contemporary chemical kinomics technologies such as activity-based protein profiling, T7 kinasetagged phages, kinobeads, three-hybrid systems, fluorescenttagged kinase binding assays, and chemical genomic profiling are discussed along with a novel allosteric Bcr-Abl kinase inhibitor (GNF-2/GNF-5) as a successful application of chemical kinomics approaches.

Identification of a Potential Anticancer Target of Danshensu by Inverse Docking

  • Chen, Shao-Jun;Ren, Ji-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.111-116
    • /
    • 2014
  • Objective: To study potential targets of Danshensu via dual inverse docking. Method: PharmMapper and idTarget servers were used as tools, and the results were checked with the molecular docking program autodock vina in PyRx 0.8. Result: The disease-related target HRas was rated top, with a pharmacophore model matching well the molecular features of Danshensu. In addition, docking results indicated that the complex was also matched in terms of structure, H-bonds, and hydrophobicity. Conclusion: Dual inverse docking indicates that HRas may be a potential anticancer target of Danshensu. This approach can provide useful information for studying pharmacological effects of agents of interest.

Determination of the number of 235U target nuclei in the irregular target using a fission time projection chamber

  • Jiajun Zhang;Jun Xiao;Junjie Sun;Mingzhi Zhang;Taiping Peng;Pu Zheng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.444-450
    • /
    • 2024
  • Based on multiple measurements of ionization loss, the Time Projection Chamber (TPC) combines strong tracking ability with particle identification ability in a large momentum range, which is an important advantage of TPC detection technology over traditional ionization measurement technology. According to these two characteristics of TPC, applying it to the measurement of fission cross-section can greatly improve the measurement accuracy. During the measurement of the fission cross-section, the number of target nuclei is required to be accurately measured. So this paper introduces a method for measuring the number of 235U target nuclei using a fission TPC system. The measurement result agrees with the reference value, and relative error is around 1 %.

Performance Prediction and Analysis of Identification Friend or Foe(IFF) Radar by using Modeling & Simulation Methodology (M&S 기법을 통한 피아식별 레이다 성능예측 및 분석)

  • Kim, Hyunseung;Park, Myunghoon;Jeon, Woojoong;Hong, Sungmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.159-167
    • /
    • 2020
  • In actual battlefield environment, IFF radar plays an important role in distinguishing friend or foe targets and assigning unique identification code to management. Performance of IFF radar is greatly affected by radio environment including atmosphere and terrain, target maneuvering and operation mode. In this paper, M&S tool is consisted of interrogator(IFF radar) and answering machine(target) for radar performance analysis. The wave propagation model using APM(Advanced Propagation Model) and radar actuator system were modeled by considering beam waveform of individual operation beam mode. Using this tool, IFF radar performance was analyzed through two experimental results. As a result, it is expected that performance of IFF radar can be predicted in the operational environment by considering target maneuvering and operation beam mode.

Identification and Functional Analysis of a Major QTL and Related Genes for Tiller Angle in Rice Using QTL Analysis

  • Dan-Dan Zhao;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.280-280
    • /
    • 2022
  • Tiller angle, defined as the angle between the main stem and its side tillers, is one of the main target traits selected inbreeding to achieve the ideal plant type and increase rice yield. Therefore, the discovery and identification of tiller angle-related genes can provide architecture and yield. In the present work, using QTL analysis hence a total of 8 quantitative trait loci (QTLs) were detected based on the phenotype data of tiller angle and tiller crown width in two years. Among them, four QTLs (qTA9, qCW9, qTA9-1, qCW9-1) were overlapped at marker interval RM6235-RM24288 on chromosome 9 with a large effect value regarded as stable major QTL. Twenty tiller angle-related genes were selected from the target region and the relative gene expression levels were checked in five compact type lines, five spreading type lines, and their parental lines. Finally, OsSA URq9 which belongs auxin-responsive SMALL AUXIN UP RNA (SAUR) protein family was selected as a target gene. Overall, this work will help broaden our understanding of the genetic control of tiller angle and tiller crown width, and this study provides both a good theoretical basis and a new genetic resource for the breeding of ideal-type rice.

  • PDF

MALDI-TOF MS System for the Identification of Microorganisms in Milk and Dairy Products (우유 및 유제품 중 미생물 동정을 위한 MALDI-TOFMS활용)

  • Kim, Hyoun Wook;Ham, Jun-Sang;Seol, Kuk-Hwan;Han, Sangha;Park, Beam Young;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • Rapid and reliable identification of microorganisms is a key for tracing the relationship between the target bacteria and related infectious diseases. Various identification methods such as classical phenotypic analysis, numerical taxonomic analysis, and DNA sequencing have been widely used to classify microorganisms in milk and dairy products. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) identifies targeted bacteria in milk and milk products. Several studies have demonstrated that MALDI-TOF MS identification is an efficient and inexpensive method for the rapid and routine identification of isolated bacteria. MALDI-TOF MS could provide accurate identification of bacteria in milk and milk products at the serotype or strain level and enable antibiotic resistance profiling within minutes.

  • PDF

A study of influencing factors on Korean SPA brand assets for the Chinese market (중국진출 한국 SPA 브랜드 자산 영향요인 연구)

  • Jia, Yuan Bo;Lee, Bomi;Kim, Mi Sook
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.3
    • /
    • pp.206-221
    • /
    • 2019
  • This study examined the causal relations among brand personality, brand identification, and brand equity of Korean SPA brands that target Chinese consumers. Data were collected from 600 Chinese consumers residing in Beijing and Shanghai from August 15th to August 30th of 2015 by using convenience sampling; 561 of the questionnaires were used in the statistical analyses. Structural equation models were employed using AMOS 22.0. The results were as follows. First, the factors of Korean SPA brand personality, such as sophistication, competence, tenacity, and interest, exerted significant influences on the brand identification, while honesty had no significant influence on brand identification. Second, brand identification had significant influence on brand awareness, brand image, and brand loyalty. Third, brand awareness showed significant influence on brand image and brand loyalty. Fourth, brand image had significant influence on brand loyalty. These results indicated that brand equity can be strengthened by enhancing brand identification with the proper brand personality. This demonstrates that if Chinese consumers can associate Korean SPA brands with a sophisticated, attractive image, brand identification may be improved and brand equity may be strengthened in the long run, providing basic data for establishing efficient marketing strategies for Korean SPA brands in the Chinese market.

A Study on the Establishment of ISAR Image Database Using Convolution Neural Networks Model (CNN 모델을 활용한 항공기 ISAR 영상 데이터베이스 구축에 관한 연구)

  • Jung, Seungho;Ha, Yonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.21-31
    • /
    • 2020
  • NCTR(Non-Cooperative Target Recognition) refers to the function of radar to identify target on its own without support from other systems such as ELINT(ELectronic INTelligence). ISAR(Inverse Synthetic Aperture Radar) image is one of the representative methods of NCTR, but it is difficult to automatically classify the target without an identification database due to the significant changes in the image depending on the target's maneuver and location. In this study, we discuss how to build an identification database using simulation and deep-learning technique even when actual images are insufficient. To simulate ISAR images changing with various radar operating environment, A model that generates and learns images through the process named 'Perfect scattering image,' 'Lost scattering image' and 'JEM noise added image' is proposed. And the learning outcomes of this model show that not only simulation images of similar shapes but also actual ISAR images that were first entered can be classified.

Chemical Genomics with Natural Products

  • Jung, Hye-Jin;Ho, Jeong-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.651-660
    • /
    • 2006
  • Natural products are a rich source of biologically active small molecules and a fertile area for lead discovery of new drugs [10, 52]. For instance, 5% of the 1,031 new chemical entities approved as drugs by the US Food and Drug Administration (FDA) were natural products between 1981 and 2002, and another 23% were natural product-derived molecules [53]. These molecules have evolved through millions of years of natural selection to interact with biomolecules in the cells or organisms and offer unrivaled chemical and structural diversity [14, 37]. Nonetheless, a large percentage of nature remains unexplored, in particular, in the marine and microbial environments. Therefore, natural products are still major valuable sources of innovative therapeutic agents for human diseases. However, even when a natural product is found to exhibit biological activity, the cellular target and mode of action of the compound are mostly mysterious. This is also true of many natural products that are currently under clinical trials or have already been approved as clinical drugs [11]. The lack of information on a definitive cellular target for a biologically active natural product prevents the rational design and development of more potent therapeutics. Therefore, there is a great need for new techniques to expedite the rapid identification and validation of cellular targets for biologically active natural products. Chemical genomics is a new integrated research engine toward functional studies of genome and drug discovery [40, 69]. The identification and validation of cellular receptors of biologically active small molecules is one of the key goals of the discipline. This eventually facilitates subsequent rational drug design, and provides valuable information on the receptors in cellular processes. Indeed, several biologically crucial proteins have already been identified as targets for natural products using chemical genomics approach (Table 1). Herein, the representative case studies of chemical genomics using natural products derived from microbes, marine sources, and plants will be introduced.