Browse > Article

Chemical Genomics with Natural Products  

Jung, Hye-Jin (Chemical Genomics Laboratory, Department of Biotechnology, College of Engineering, Yonsei University)
Ho, Jeong-Kwon (Chemical Genomics Laboratory, Department of Biotechnology, College of Engineering, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.5, 2006 , pp. 651-660 More about this Journal
Abstract
Natural products are a rich source of biologically active small molecules and a fertile area for lead discovery of new drugs [10, 52]. For instance, 5% of the 1,031 new chemical entities approved as drugs by the US Food and Drug Administration (FDA) were natural products between 1981 and 2002, and another 23% were natural product-derived molecules [53]. These molecules have evolved through millions of years of natural selection to interact with biomolecules in the cells or organisms and offer unrivaled chemical and structural diversity [14, 37]. Nonetheless, a large percentage of nature remains unexplored, in particular, in the marine and microbial environments. Therefore, natural products are still major valuable sources of innovative therapeutic agents for human diseases. However, even when a natural product is found to exhibit biological activity, the cellular target and mode of action of the compound are mostly mysterious. This is also true of many natural products that are currently under clinical trials or have already been approved as clinical drugs [11]. The lack of information on a definitive cellular target for a biologically active natural product prevents the rational design and development of more potent therapeutics. Therefore, there is a great need for new techniques to expedite the rapid identification and validation of cellular targets for biologically active natural products. Chemical genomics is a new integrated research engine toward functional studies of genome and drug discovery [40, 69]. The identification and validation of cellular receptors of biologically active small molecules is one of the key goals of the discipline. This eventually facilitates subsequent rational drug design, and provides valuable information on the receptors in cellular processes. Indeed, several biologically crucial proteins have already been identified as targets for natural products using chemical genomics approach (Table 1). Herein, the representative case studies of chemical genomics using natural products derived from microbes, marine sources, and plants will be introduced.
Keywords
Chemical genomics; natural products; target identification and validation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 12  (Related Records In Web of Science)
연도 인용수 순위
1 Buchnicek J. 1950. Colchicine in ripening seeds of the wild saffron (Colchicum autumnale L). Pharm. Acta Helv. 25: 389-401
2 Butler, M. S. 2004. The role of natural product chemistry in drug discovery. J. Nat. Prod. 67: 2141-2153   DOI   ScienceOn
3 Cheung, W. Y. 1980. Calmodulin plays a pivotal role in cellular regulation. Science 207: 19-27   DOI
4 Gingras, A. C., B. Raught, and N. Sonenberg. 1999. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68: 913- 963   DOI   ScienceOn
5 Hou, T. and X. Xu. 2004. Recent development and application of virtual screening in drug discovery: An overview. Curr. Pharm. Des. 10: 1011-1033   DOI   ScienceOn
6 Ingber, D., T. Fujita, S. Kishimoto, K. Sudo, T. Kanamaru, H. Brem, and J. Folkman. 1990. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348: 555-557   DOI   ScienceOn
7 Itazaki, H., K. Nagashima, K. Sugita, H. Yoshida, Y. Kawamura, Y. Yasuda, K. Matsumoto, K. Ishii, N. Uotani, and H. Nakai. 1990. Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J. Antibiot. 43: 1524-1532   DOI
8 Koehn, F. E. and G. T. Carter. 2005. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4: 206-220   DOI   ScienceOn
9 Kwon, H. J., J. H. Kim, H. J. Jung, Y. G. Kwon, M. Y. Kim, J. R. Rho, and J. H. Shin. 2001. Anti-angiogenic activity of Acalycixenolide E, a novel marine natural product from Acalycigorgia inermis. J. Microbiol. Biotechnol. 11: 656- 662
10 Radeke, H. S., C. A. Digits, R. L. Casaubon, and M. L. Snapper. 1999. Interactions of (-)-ilimaquinone with methylation enzymes: Implications for vesicular-mediated secretion. Chem. Biol. 6: 639-647   DOI   ScienceOn
11 Radeke, H. S. and M. L. Snapper. 1998. Photoaffinity study of the cellular interactions of ilimaquinone. Bioorg. Med. Chem. 6: 1227-1232   DOI   ScienceOn
12 Sato, Y. 2003. Aminopeptidases and angiogenesis. Endothelium 10: 287-290   DOI   ScienceOn
13 Tong, J. K., C. A. Hassig, G. R. Schinitzler, R. E. Kingston, and S. L. Schreiber. 1998. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395: 917-921   DOI   ScienceOn
14 Sin, N., L. Meng, M. Q. Wang, J. J. Wen, W. G. Bornmann, and C. M. Crews. 1997. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. 94: 6099-6103
15 Takizawa, P. A., J. K. Yucel, B. Veit, D. J. Faulkner, T. Deerinck, G. Soto, M. Ellisman, and V. Malhotra. 1993. complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Cell 73: 1079-1090   DOI   ScienceOn
16 Thaloor, D., A. K. Singh, G. S. Sidhu, P. V. Prasad, H. K. Kleinman, and R. K. Maheshwari. 1998. Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin. Cell Growth Differ. 9: 305-312
17 Towle, M. J., K. A. Salvato, J. Budrow, B. F. Wels, G. Kuznetsov, K. K. Aalfs, S. Welsh, W. Zheng, B. M. Seletsk, M. H. Palme, G. J. Habgood, L. A. Singer, L. V. Dipietro, Y. Wang, J. J. Chen, D. A. Quincy, A. Davis, K. Yoshimatsu, Y. Kishi, M. J. Yu, and B. A. Littlefield. 2001. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 61: 1013-1021
18 Fenteany, G., R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, and S. L. Schreiber. 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 5: 726-731
19 Fujii, H., M. Nakajima, I. Saiki, J. Yoneda, I. Azuma, and T. Tsuruo. 1995. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/ CD13. Clin. Exp. Metastasis 13: 337-344
20 Jin, Y., J. Yu, and Y. G. Yu. 2002. Identification of hNopp140 as a binding partner for doxorubicin with a phage display cloning method. Chem. Biol. 9: 157-162   DOI   ScienceOn
21 Macarron, R. 2006. Critical review of the role of HTS in drug discovery. Drug Discov. Today 11: 277-279   DOI   ScienceOn
22 Low, W. K., Y. Dang, T. Schneider-Poetsch, Z. Shi, N. S. Choi, W. C. Merrick, D. Romo, and J. O. Liu. 2005. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol. Cell 20: 709-722   DOI   ScienceOn
23 Towbin, H., K. W. Bair, J. A. DeCaprio, M. J. Eck, S. Kim, F. R. Kinder, A. Morollo, D. R. Mueller, P. Schindler, H. K. Song, J. van Oostrum, R. W. Versace, H. Voshol, J. Wood, S. Zabludoff, and P. E. Phillips. 2003. Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J. Biol. Chem. 278: 52964- 52971   DOI   ScienceOn
24 Newman, D. J., G. M. Cragg, and K. M. Snader. 2000. The influence of natural products upon drug discovery. Nat. Prod. Rep. 17: 215-234   DOI
25 He, L., G. A. Orr, and S. B. Horwitz. 2001. Novel molecules that interact with microtubules and have functional activity similar to taxol. Drug Discov. Today 6: 1153-1164   DOI   ScienceOn
26 Heitman, J., N. R. Movva, and M. N. Hall. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 23: 905-909
27 Jordan, M. A. and L. Wilson. 1998. Microtubules and actin filaments: Dyanmic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 10:123-131   DOI   ScienceOn
28 Kwon, H. J. 2006. Discovery of new small molecules and targets towards angiogenesis via chemical genomics approach. Curr. Drug Targets 7: 397-405   DOI   ScienceOn
29 Shim, J. S., J. H. Kim, H. Y. Cho, Y. N. Yum, S. H. Kim, H. J. Park, B. S. Shim, S. H. Choi, and H. J. Kwon. 2003. Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem. Biol. 10: 695-704   DOI   ScienceOn
30 Siekierka, J. J., S. H. Hung, M. Poe, C. S. Lin, and N. H. Sigal. 1989. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341: 755-757   DOI   ScienceOn
31 Kim, H. J., J. H. Kim, C. H. Lee, and H. J. Kwon. 2006. Gentisyl alcohol, an antioxidant from microbial metabolite, induces angiogenesis in vitro. J. Microbiol. Biotechnol. 16: 475-479   과학기술학회마을
32 Ruegger, A., M. Kuhn, H. Lichti, H. R. Loosli, R. Huguenin, C. Quiquerez, and A. von Wartburg. 1976. Cyclosporin A, a peptide metabolite from Trichoderma polysporum Rifai, with a remarkable immunosuppressive activity. Helv. Chim. Acta. 59: 1075-1092   DOI   ScienceOn
33 Bierer, B. E., P. K. Somers, T. J. Wandless, S. J. Burakoff, and S. L. Schreiber. 1990. Probing immunosuppressant action with a nonnatural immunophilin ligand. Science 250: 556-559   DOI
34 Clipstone, N. A. and G. R. Crabtree. 1992. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357: 695-697   DOI   ScienceOn
35 Handschumacher, R. E., M. W. Harding, J. Rice, R. J. Drugge, and D. W. Speicher. 1984. Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science 226: 544-547   DOI
36 Kino, T., H. Hatanaka, S. Miyata, N. Inamura, M. Nishiyama, T. Yajima, T. Goto, M. Okuhara, M. Kohsaka, H. Aoki, and H. Imanaka. 1987. FK-506, a novel immunosuppressant isolated from a Streptomyces. J. Antibiot. 40: 1256-1265   DOI
37 Newman, D. J., G. M. Cragg, and K. M. Snader. 2003. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod. 66: 1022-1037   DOI   ScienceOn
38 Paterson, I. and E. A. Anderson. 2005. The renaissance of natural products as drug candidates. Science 21: 451-453
39 Rozen, F., I. Edery, K. Meerovitch, T. E. Dever, W. C. Merrick, and N. Sonenberg. 1990. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell Biol. 10: 1134-1144   DOI
40 Sharma, S. V., T. Agatsuma, and H. Nakano. 1998. Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene 16: 2639-2645   DOI
41 Schreiber, S. L. 1998. Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg. Med. Chem. 6: 1127-1152   DOI   ScienceOn
42 Osawa, M, M. B. Swindells, J. Tanikawa, T. Tanaka, T. Mase, T. Furuya, and M. Ikura. 1998. Solution structure of calmodulin-W-7 complex: The basis of diversity in molecular recognition. J. Mol. Biol. 276: 165-176   DOI   ScienceOn
43 Piggott, A. M. and P. Karuso. 2004. Quality, not quantity: The role of natural products and chemical proteomics in modern drug discovery. Comb. Chem. High Throughput Screen 7: 607-630
44 Sawada, S., G. Suzuki, Y. Kawase, and F. Takaku. 1987. Novel immunosuppressive agent, FK506. In vitro effects on the cloned T cell activation. J. Immunol. 139: 1797-1803
45 Ko, H. R. 2002. PC-766B' and PC-766B, 16-membered macrolide angiogenesis inhibitors produced by Nocardia sp. RK97-56. J. Microbiol. Biotechnol. 12: 829-833
46 Veigl, M. L., T. C. Vanaman, and W. D. Sedwick. 1984. Calcium and calmodulin in cell growth and transformation. Biochim. Biophys. Acta 738: 21-48
47 Wong, D. L., R. J. Hayashi, and R. D. Ciaranello. 1985. Regulation of biogenic amine methyltransferases by glucocorticoids via S-adenosylmethionine and its metabolizing enzymes, methionine adenosyltransferase and S-sdenosylhomocysteine hydrolase. Brain Res. 330:209-216   DOI   ScienceOn
48 Northcote, P. T., J. W. Blunt, and M. H. G. Munro. 1991. Pateamine: A potent cytotoxin from the New Zealand marine sponge, Mycale sp. Tetrahedron Lett. 32: 6411-6414   DOI   ScienceOn
49 Rodeschini, V., J. G. Boiteau, P. Van de Weghe, C. Tarnus, and J. Eustache. 2004. MetAP-2 inhibitors based on the fumagillin structure. Side-chain modification and ringsubstituted analogues. J. Org. Chem. 69: 357-373   DOI   ScienceOn
50 Peterson, J. R. and T. J. Mitchison. 2002. Small molecules, big impact: A history of chemical inhibitors and the cytoskeleton. Chem. Biol. 9: 1275-1285   DOI   ScienceOn
51 Levine, M. 1951. The action of colchicine of cell division in human cancer, animal, and plant tissues. Ann. N. Y. Acad. Sci. 51:1365-1408   DOI   ScienceOn
52 Clardy, J. and C. Walsh. 2004. Lessons from natural molecules. Nature 432: 829-837   DOI   ScienceOn
53 Harding, M. W., A. Galat, D. E. Uehling, and S. L. Schreiber. 1989. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341: 758-760   DOI   ScienceOn
54 Heitman, J., N. R. Movva, P. C. Hiestand, and M. N. Hall. 1991. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 88: 1948-1952
55 Bae, M. A., K. Yamada, D. Uemura, J. H. Seu, and Y. H. Kim. 1998. Aburatubolactam C, a novel apoptosis-inducing substance produced by marine Streptomyces sp. SCRC A-20. J. Microbiol. Biotechnol. 8: 455-460
56 Borel, J. F., C. Feurer, C. Magnee, and H. Stahelin. 1977. Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology 32: 1017-1025
57 Kijima, M., M. Yoshida, K. Sugita, S. Horinouchi, and T. Beppu. 1993. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem. 268: 22429-22435
58 Kwon, H. J. 2003. Chemical genomics-based target identification and validation of anti-angiogenic agents. Curr. Med. Chem. 10: 717-736   DOI   ScienceOn
59 Adam, G. C., C. D. Vanderwal, E. J. Sorensen, and B. F. Cravatt. 2003. (-)-FR182877 is a potent and selective inhibitor of carboxylesterase-1. Angew. Chem. Int. Ed. Engl. 42: 5480-5484   DOI   ScienceOn
60 Butler, M. S. 2005. Natural products to drugs: natural product derived compounds in clinical trials. Nat. Prod. Rep. 22: 162-195   DOI   ScienceOn
61 Meng, L., B. H. Kwok, N. Sin, and C. M. Crews. 1999. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res. 59: 2798- 2801
62 Crews, C. M., W. S. Lane, and S. L. Schreiber. 1996. Didemnin binds to the protein palmitoyl thioesterase responsible for infantile neuronal ceroid lipofuscinosis. Proc. Natl. Acad. Sci. 93: 4316-4319
63 Rosato, R. R. and S. Grant. 2004. Histone deacetylase inhibitors in clinical development. Expert Opin. Investig. Drugs 13: 21-38   DOI   ScienceOn
64 Sigg, H. P. and H. P. Weber. 1968. Isolation and structure elucidation of ovalicin. Helv. Chim. Acta. 51: 1395-1408   DOI   ScienceOn
65 Vandonselaar, M., R. A. Hickie, J. W. Quail, and L. T. Delbaere. (1994) Trifluoperazine-induced conformational change in Ca(2+)-calmodulin. Nat. Struct. Biol. 1: 795-801   DOI
66 Yoshida, M., M. Kijima, M. Akita, and T. Beppu. 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265: 17174-17179
67 Nishi, K., M. Yoshida, D. Fujiwara, M. Nishikawa, S. Horinouchi, and T. Beppu. 1994. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269: 6320-6324
68 Shim, J. S., D. H. Kim, H. J. Jung, J. H. Kim, D. Lim, S. K. Lee, K. W. Kim, J. W. Ahn, J. S. Yoo, J. R. Rho, and H. J. Kwon. 2002. Hydrazinocurcumin, a novel synthetic curcumin derivative, is a potent inhibitor of endothelial cell proliferation. Bioorg. Med. Chem. 10: 2987-2992   DOI   ScienceOn
69 Luibrand, R. T., T. R. Erdman, J. J. Vollmer, P. J. Scheuer, J. Finer, and J. Clardy. 1979. Ilimaquinone, a sesquiterpenoid quinone from a marine sponge. Tetrahedron 35: 609-612   DOI   ScienceOn
70 Mohri, H. 1968 Amino-acid composition of 'Tubulin' constitution microtubules of sperm flagella. Nature 217: 1053-1054   DOI   ScienceOn
71 Saiki, I., H. Fujii, J. Yoneda, F. Abe, M. Nakajima, T. Tsuruo, and I. Azuma. 1993. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int. J. Cancer 54: 137-143   DOI   ScienceOn
72 Kelloff, G. J., J. A. Crowell, E. T. Hawk, V. E. Steele, R. A. Lubet, C. W. Boone, J. M. Covey, L. A. Doody, G. S. Omenn, and P. Greenwald. 1996. Strategy and planning for chemopreventive drug development: Clinical development plans II. J. Cell Biochem. 26: 54-71
73 Look, A. T., R. A. Ashmun, L. H. Shapiro, and S. C. Peiper. 1989. Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J. Clin. Invest. 83: 1299-1307   DOI   ScienceOn
74 Taunton, J., C. A. Hassig, and S. L. Schreiber. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408-411   DOI   ScienceOn
75 Griffith, E. C., Z. Su, B. E. Turk, S. Chen, Y. H. Chang, Z. Wu, K. Biemann, and J. O. Liu. 1997. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol. 4: 461-471   DOI   ScienceOn
76 Hait, W. N. 1987. Targeting calmodulin for the development of novel cancer chemotherapeutic agents. Anticancer Drug Des. 2: 139-149
77 Shim, J. S., J. Lee, H. J. Park, S. J. Park, and H. J. Kwon. 2004. A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function. Chem. Biol. 11: 1455- 1463   DOI   ScienceOn
78 Abe, J., W. Zhou, N. Takuwa, J. Taguchi, K. Kurokawa, M. Kumada, and Y. Takuwa. 1994. A fumagillin derivative angiogenesis inhibitor, AGM-1470, inhibits activation of cyclindependent kinases and phosphorylation of retinoblastoma gene product but not protein tyrosyl phosphorylation or protooncogene expression in vascular endothelial cells. Cancer Res. 54: 3407-3412
79 Chen, J. K., W. S. Lane, and S. L. Schreiber. 1999. The identification of myriocin-binding proteins. Chem. Biol. 6: 221-235   DOI   ScienceOn
80 Shim, J. S. and H. J. Kwon. 2004. Chemical genetics for therapeutic target mining. Expert Opin. Ther. Targets 8: 653-661   DOI   ScienceOn
81 Borisy, G. G. and E. W. Taylor. 1967. The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein. J. Cell Biol. 34:525-533   DOI   ScienceOn
82 Lowther, W. T., D. A. McMillen, A. M. Orville, and B. W. Matthews. 1998. The anti-angiogenic agent fumagillin covalently modifies a conserved active-sith histidine in the Escherichia coli methionine aminopeptidase. Proc. Natl. Acad. Sci. USA 95: 12153-12157
83 Liu, S., J. Widom, C. W. Kemp. C. M. Crews, and J. Clardy. 1998. Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 282: 1324-1327   DOI
84 Weisenberg, R. C., G. G. Borisy, and E. W. Taylor. 1968. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7: 4466-4479   DOI   ScienceOn
85 Altmann, K. H. 2001. Microtubule-stabilizing agents: A growing class of important anticancer drugs. Curr. Opin. Chem. Biol. 5: 424-431   DOI   ScienceOn
86 Kwok, B. H., B. Koh, M. I. Ndubuisi, M. Elofsson, and C. M. Crews. 2001. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem. Biol. 8: 759- 766   DOI   ScienceOn
87 Liu, J., J. D. Jr. Farmer, W. S. Lane, J. Friedman, I. Weissman, and S. L. Schreiber. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807-815   DOI   ScienceOn
88 Sternson, S. M., J. C. Wong, C. M. Grozinger, and S. L. Schreiber. 2001. Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org. Lett. 3: 4239-4242   DOI   ScienceOn
89 Arbiser, J. L., N. Klauber, R. Rohan, R. van Leeuwen, M. T. Huang, C. Fisher, E. Flynn, and H. R. Byers. 1998. Curcumin is an in vivo inhibitor of angiogenesis. Mol. Med. 4: 376-383