• 제목/요약/키워드: Target DNA

검색결과 786건 처리시간 0.026초

Current status of CRISPR/Cas9 base editor technologies and their applications in crop precision breeding

  • Kim, Rigyeong;Song, Jaeeun;Ga, Eunji;Min, Myung Ki;Lee, Jong-Yeol;Lim, Sun-Hyung;Kim, Beom-Gi
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.885-895
    • /
    • 2019
  • Plant biotechnologists have long dreamed of technologies to manipulate genes in plants at will. This dream has come true partly through the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, which now has been used to edit genes in several important crops. However, there are many restrictions in editing a gene precisely using the CRISPR/Cas9 technology because CRISPR/Cas9 may cause deletions or additions in some regions of the target gene. Several other technologies have been developed for gene targeting and precision editing. Among these, base editors might be the most practically and efficiently used compared to others. Base editors are tools which are able to cause a transition from cytosine into thymine, or from adenine into guanine very precisely on specific sequences. Cytosine base editors basically consist of nCas9, cytosine deaminase, and uracil DNA glycosylase inhibitor (UGI). Adenine base editors consist of nCas9 and adenine deaminase. These were first developed for human cells and have since also been applied successfully to crops. Base editors have been successfully applied for productivity improvement, fortification and herbicide resistance of crops. Thus, base editor technologies start to open a new era for precision gene editing or breeding in crops and might result in revolutionary changes in crop breeding and biotechnology.

Expression in Escherichia coli of a Putative Human Acetohydroxyacid Synthase

  • Duggleby, Ronald G.;Kartikasari, Apriliana E.R.;Wunsch, Rebecca M.;Lee, Yu-Ting;Kil, Mee-Wha;Shin, Ju-Young;Chang, Soo-Ik
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.195-201
    • /
    • 2000
  • A human gene has been reported that may encode the enzyme acetohydroxyacid synthase. Previously this enzyme was thought to be absent from animals although it is present in plants and many microorganisms. In plants, this enzyme is the target of a number of commercial herbicides and the use of these compounds may need to be reassessed if the human enzyme exists and proves to be susceptible to inhibition. Here we report the construction of several plasmid vectors containing the cDNA sequence for this protein, and their expression in Escherichia coli. High levels of expression were observed, but most of the protein proved to be insoluble. The small amounts of soluble protein contained little or no acetohydroxyacid synthase activity. Attempts to refold the insoluble protein were successful insofar as the protein became soluble. However, the refolded protein did not gain any acetohydroxyacid synthase activity. In vivo complementation tests of an E. coli mutant produced no evidence that the protein is active. Incorrect folding, or the lack of another subunit, may explain the data but we favor the interpretation that this gene does not encode an acetohydroxyacid synthase.

  • PDF

Luciferase reporter gene assay를 이용한 단삼(丹蔘)추출물의 소염, 진통작용에 대한 in vitro 연구 (In Vitro Study of Anti-inflammatory and Analgesic Effects of Salvia Miltiorrhiza (SM) Extracts Using Luciferase Reporter Gene Assay)

  • 김희은;민상연;김장현
    • 대한한의학회지
    • /
    • 제29권3호
    • /
    • pp.88-99
    • /
    • 2008
  • Objectives: In order to identify the anti-inflammatory and analgesic properties of Salvia miltiorrhiza (Dan-Sam), widely used in Korean traditional medicine, an in vitro screening system was designed using pGL3, a luciferase reporter vector, and the tumor necrosis factor (TNF)-${\alpha}$ and cyclooxygenase (COX)-2 as target genes. Methods: The promoter regions of each gene were generated by PCR using the human chromosome as template DNA, and inserted into pGL3 vector with Kpn I and Hind III. The final construct was transfected into human myelomonocytic leukemia cells (U-937) that could be differentiated and activated by phorbol 12-myristate 13-acetate (PMA) or lipopolysaccharide (LPS). Using this system, the anti-inflammatory and analgesic effects of several herbal extracts regarded to have the medicinal effects of diminishing body heat and complementing Qi were tested. The chemicals PD98059 and berberine chloride were used as controls of the transcriptional inhibitors of TNF-${\alpha}$ and COX-2, respectively. Results: Salvia miltiorrhiza (Dan-Sam) demonstrated significant decrease of TNF-${\alpha}$ and COX-2 mRNA in the in vitro assay system. In MTT assay, Salvia miltiorrhiza (Dan-Sam) did not significantly inhibit the survival and proliferation of human myelomonocytic leukemia cells (U-937). Conclusions: Salvia miltiorrhiza (Dan-Sam) was found to exhibit the significant medicinal properties of anti-inflammatory and analgesic effects.

  • PDF

Differential Roles of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Angiogenesis

  • Shibuya, Masabumi
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.469-478
    • /
    • 2006
  • Vascular endothelial growth factor (VEGF)-A, a major regulator for angiogenesis, binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). These receptors regulate physiological as well as pathological angiogenesis. VEGFR2 has strong tyrosine kinase activity, and transduces the major signals for angiogenesis. However, unlike other representative tyrosine kinase receptors which use the Ras pathway, VEGFR2 mostly uses the Phospholipase-$C{\gamma}$-Protein kinase-C pathway to activate MAP-kinase and DNA synthesis. VEGFR2 is a direct signal transducer for pathological angiogenesis including cancer and diabetic retinopathy, thus, VEGFR2 itself and the signaling appear to be critical targets for the suppression of these diseases. VEGFR1 plays dual role, a negative role in angiogenesis in the embryo most likely by trapping VEGF-A, and a positive role in adulthood in a tyrosine kinase-dependent manner. VEGFR1 is expressed not only in endothelial cells but also in macrophage-lineage cells, and promotes tumor growth, metastasis, and inflammation. Furthermore, a soluble form of VEGFR1 was found to be present at abnormally high levels in the serum of preeclampsia patients, and induces proteinurea and renal dysfunction. Therefore, VEGFR1 is also an important target in the treatment of human diseases. Recently, the VEGFR2-specific ligand VEGF-E (Orf-VEGF) was extensively characterized. Interestingly, the activation of VEGFR2 via VEGF-E in vivo results in a strong angiogenic response in mice with minor side effects such as inflammation compared with VEGF-A, suggesting VEGF-E to be a novel material for pro-angiogenic therapy.

Effects of Takrisodokyeum Water Extracts on LNCaP Prostate Cancer Cells

  • Park, Kwan-Woo;Kim, Song-Baeg;Choi, Chang-Min;Ryu, Do-Gon;Kwon, Kang-Beom
    • 동의생리병리학회지
    • /
    • 제23권5호
    • /
    • pp.1154-1160
    • /
    • 2009
  • Androgen receptors (AR) play a crucial role in the development and progression of prostate cancer. Many studies have suggested that prostate cancer cell proliferation is inhibited by AR downregulation, and it has been reported that Takrisodokyeum (TRSDY) induced apoptotic cell death and suppressed tumorigenesis in human leukemia cells. Therefore, this study was conducted to elucidate the mechanism by which TRSDY affects cell growth and AR expression in androgen-dependent prostate cancer cells (LNCaP cells). We investigated the proliferation and apoptosis of LNCaP cells using MTT and DNA fragmentation assays. In addition, we used western blot analysis to assess the effects of TRSDY on the expression of the AR target gene, prostate-specific antigen (PSA). Furthermore, the mechanism of AR downregulation by TRSDY was investigated using EMSA to analyze the binding activity of AR to androgen response elements (ARE). TRSDY significantly suppressed proliferation and induced apoptosis in LNCaP cells. In addition, TRSDY-induced apoptotic cell death was accompanied by activation of caspase-3 and cleavage of its substrate, poly(ADP-ribose) polymerase. TRSDY also inhibited the constitutively expressed- or 5a-dihydrotestosterone (DHT)-induced AR/PSA protein levels. However, these effects were mediated by inhibition of the binding of AR to ARE. TRSDY-mediated AR/PSA downregulation contributes to the inhibition of cell proliferation and the induction of apoptosis in LNCaP human prostate cancer cells. Our findings suggest that TRSDY may be used as a chemopreventive or chemotherapeutic agent for the treatment of prostate cancer.

Wnt/$\beta$-catenin/Tcf Signaling Induces the Transcription of a Tumor Suppressor Axin2, a Negative Regulator of the Signaling Pathway

  • Jho, Eek-hoon;Tong Zhang;Claire Domon;Joo, Choun-Ki;Freund, Jean-Noel;Frank Costantini
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.108-108
    • /
    • 2001
  • Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of ${\beta}$-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6 kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved non-coding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by ${\beta}$-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility-shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6 kb genomic sequence was sufficient to direct the tissue specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.

  • PDF

PIG3 Regulates p53 Stability by Suppressing Its MDM2-Mediated Ubiquitination

  • Jin, Min;Park, Seon-Joo;Kim, Seok Won;Kim, Hye Rim;Hyun, Jin Won;Lee, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.396-403
    • /
    • 2017
  • Under normal, non-stressed conditions, intracellular p53 is continually ubiquitinated by MDM2 and targeted for degradation. However, in response to severe genotoxic stress, p53 protein levels are markedly increased and apoptotic cell death is triggered. Inhibiting the ubiquitination of p53 under conditions where DNA damage has occurred is therefore crucial for preventing the development of cancer, because if cells with severely damaged genomes are not removed from the population, uncontrolled growth can result. However, questions remain about the cellular mechanisms underlying the regulation of p53 stability. In this study, we show that p53-inducible gene 3 (PIG3), which is a transcriptional target of p53, regulates p53 stability. Overexpression of PIG3 stabilized both endogenous and transfected wild-type p53, whereas a knockdown of PIG3 lead to a reduction in both endogenous and UV-induced p53 levels in p53-proficient human cancer cells. Using both in vivo and in vitro ubiquitination assays, we found that PIG3 suppressed both ubiquitination- and MDM2-dependent proteasomal degradation of p53. Notably, we demonstrate that PIG3 interacts directly with MDM2 and promoted MDM2 ubiquitination. Moreover, elimination of endogenous PIG3 in p53-proficient HCT116 cells decreased p53 phosphorylation in response to UV irradiation. These results suggest an important role for PIG3 in regulating intracellular p53 levels through the inhibition of p53 ubiquitination.

Luteolin Inhibits Proliferation Induced by IGF-1 Pathway Dependent ERα in Human Breast Cancer MCF-7 Cells

  • Wang, Li-Meng;Xie, Kun-Peng;Huo, Hong-Nan;Shang, Fei;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1431-1437
    • /
    • 2012
  • The growth of many breast tumors is stimulated by IGF-1, which activates signal transduction pathways inducing cell proliferation. $ER{\alpha}$ is important in this process. The aim of the study was to investigate relationships in vitro among inhibitory effects of luteolin on the growth of MCF-7 cells, IGF-1 pathway and $ER{\alpha}$. Our results showed that luteolin could effectively block IGF-l-stimulated MCF-7 cell proliferation in a dose- and time-dependent manner and block cell cycle progression and induce apoptosis evidenced by the flow cytometric detection of sub-G1DNA content. Luteolin markedly decreased IGF-l-dependent IGF-IR and Akt phosphorylation without affecting Erk1/2 phosphorylation. Further experiments pointed out that $ER{\alpha}$ was directly involved in IGF-l induced cell growth inhibitory effects of luteolin, which significantly decreased $ER{\alpha}$ expression. Knockdown of $ER{\alpha}$ in MCF-7 cells by an $ER{\alpha}$-specific siRNA decreased the IGF-l induced cell growth inhibitory effects of luteolin. $ER{\alpha}$ is thus a possible target of luteolin. These findings indicate that the inhibitory effect of luteolin on the growth of MCF-7 cells is via inhibiting IGF-l mediated PI3K-Akt pathway dependent of $ER{\alpha}$ expression.

Expression of EMSY, a Novel BRCA2-link Protein, is Associated with Lymph Node Metastasis and Increased Tumor Size in Breast Carcinomas

  • Madjd, Zahra;Akbari, Mohammad Esmaeil;Zarnani, Amir Hassan;Khayamzadeh, Maryam;Kalantari, Elham;Mojtabavi, Nazanin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1783-1789
    • /
    • 2014
  • Background: The EMSY gene encodes a BRCA2-binding partner protein that represses the DNA repair function of BRCA2 in non-hereditary breast cancer. Although amplification of EMSY gene has been proposed to have prognostic value in breast cancer, no data have been available concerning EMSY tissue expression patterns and its associations with clinicopathological features. Materials and Methods: In the current study, we examined the expression and localization pattern of EMSY protein by immunohistochemistry and assessed its prognostic value in a well-characterized series of 116 unselected breast carcinomas with a mean follow up of 47 months using tissue microarray technique. Results: Immunohistochemical expression of EMSY protein was detected in 76% of primary breast tumors, localized in nuclear (18%), cytoplasmic (35%) or both cytoplasmic and nuclear sites (23%). Univariate analysis revealed a significant positive association between EMSY expression and lymph node metastasis (p value=0.045) and larger tumor size (p value=0.027), as well as a non-significant relation with increased risk of recurrence (p value=0.088), whereas no association with patients' survival (log rank test, p value=0.482), tumor grade or type was observed. Conclusions: Herein, we demonstrated for the first time the immunostaining pattern of EMSY protein in breast tumors. Our data imply that EMSY protein may have impact on clinicipathological parameters and could be considered as a potential target for breast cancer treatment.

Tetravalent Bispecific 항체 분자인 Di-diabody의 제조 및 표적 단백질에 대한 항염증 영향 (Production of Di-diabody, a Tetravalent Bispecific Antibody Molecule and its Anti-inflammatory Effects on the Target Proteins)

  • 정선기;류창선;김선규;마진열;김상겸
    • 약학회지
    • /
    • 제54권6호
    • /
    • pp.500-506
    • /
    • 2010
  • TNF-${\alpha}$ and VCAM-1 play a pivotal role in the pathogenesis of rheumatoid arthritis, and the development of drugs targeting these molecules has extended the therapeutical approaches to rheumatoid arthritis patients. Bispecific antibodies combine the antigen-binding sites of two antibodies within a single molecule and thus they are able to bind to two different epitopes simultaneously. A specific bispecific antibody format termed "Di-diabody" was made for the efficient approach to anti-inflammation. In this study, the DNA vector construct of Di-diabody was built up against two antigens, VCAM-1 and TNF-${\alpha}$. For evaluating this Di-diabody as a bispecific antibody on the efficacy of anti-inflammation, the proteins were analyzed according to each antigen binding affinity and cell based assay related separate molecules. The 7H/Humira Di-diabody produced in this study interacted with its ligands, VCAM-1 and TNF-${\alpha}$, respectively. Also, this antibody exhibited the similar functional activities as compared to 7H-IgG in respect to inhibition of hVCAM-1-induced cell adhesion and Humira-IgG in respect to inhibition of TNF-${\alpha}$ induced cytotoxicity. Further study to elucidate the pharmacological significance of the Di-diabody is warranted using experimental animals.