• Title/Summary/Keyword: Tap

Search Result 1,813, Processing Time 0.028 seconds

News Big Data Analysis of 'Tap Water Larvae' Using Topic Modeling Analysis (토픽 모델링을 활용한 '수돗물 유충' 뉴스 빅데이터 분석)

  • Lee, Su Yeon;Kim, Tae-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.28-37
    • /
    • 2020
  • This study was conducted to propose measures to improve crisis response to environmental issues by analyzing the news big data on the 'tap water larvae' situation and identifying related major keywords and topics. To accomplish this, 1,975 cases of 'tap water larvae' reported between July 13 to August 31, 2020 were divided into three periods and analyzed using topical modeling techniques. The analysis output 15 topics for each period. According to the result, the 'tap water larvae' incident, as reported in the media, is divided into the occurrence, diffusion, and rectification stages. The government's response and civilian risk consciousness and reaction could also be seen. Based on the result, the following measures to respond to environment risk is proposed. First, it is necessary to explore the various intertwined context with the 'tap water larvae' incident at its core and develop responsiveness to environmental problems through education which forms integrated views. Second, a role to monitor the environment must be implemented and civilian-participated environmental information must be shared through the application of internet communities. Third, the cultivation and deployment of environmental communicators who provide and communicate fast and accurate environment information is required. This study, as the first in Korea to use the topic modeling analysis method based on big data related to 'tap water larvae', has academic significance in that it has empirically and systematically analyzed environmental issues which appear as unstructured data. It also political significance as it suggests ways to improve environmental education and communication.

Changes in the Concentrations of the Tap Water Chlorination By-Products by Heating during Cooking, and Human Ingestion Exposure (조리시 가열에 따른 수돗물 중 염소소독부산물의 농도 변화와 인체 섭취 노출)

  • 김희갑;이수형
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.35-43
    • /
    • 1999
  • A number of disinfection by-products (DBPs) are formed as a result of the addition of chlorine into the public water supply and some of them have been suggested to cause adverse health effects on humans. However, the estimation of human ingestion exposure to each DBP has been performed simply by multiplying the concentration of a chemical in the cold tap water by the volume of water consumed during a given period of time. However, a questionnaire concerning water consumptions administered to sixty people residing in Chunchon showed that the volume of tap water consumed accounted for approximately 70% of the total volume of water consumed and that of heated water represented approximately 94% of tap water ingested. Heating durations for water-containing foods (e. g., soups and pot stews) and heated beverages (e. g., barley tea) were grouped into 10, 20, 30, and 35 minutes. Based on these time frames, an aluminum pot containing one liter of tap water was heated for the above respective time periods using a gas range to determine the variations of the concentrations of individual DBPs by heating. The pH and total residual chlorine were measured before and after heating. Collected water samples were carried to the laboratory and analyzed for eight DBPs and total organic carbon. Chloroform, bromodichloromethane, chloral hydrate, 1, 2-dichloro-2-propanone, 1, 1, 1-trichloropropanone, and dichloroacetonitrile were not detected following heating for 10 minutes and longer. The concentration of dichloroacetic acid (DCAA) was elevated with heating duration, resulting in the averages of 2.0, 3.1, 4.7, and 12 times the initial concentration, respectively, for 10, 20, 30, and 35 minute heating periods. On the other hand, the concentration of trichloroacetic acid (TCAA) decreased with heating duration, with 0.65, 0.40, 0.34, and 0.19 times lower than the initial concentration. Therefore, it is suggested that ingestion exposure to DCAA increases with heating duration but that ingestion exposure to TCAA decreases. In addition, while the amount of DCAA was elevated at the initial time periods (10 or 20 minutes) and then slowly decreased, that of TCAA was rapidly decreased. In conclusion, water-heating processes during cooking influence the concentrations of individual DBPs in the tap water, with lower levels for volatile DBPs and TCAA, and higher levels for DCAA. Therefore, concentration change needs to be taken into consideration in the estimation of human ingestion exposure to DBPs.

  • PDF

Predictive Model Selection of Disinfection by-products (DBPs) in D Water Treatment Plant (D 정수장 소독부산물 예측모델 선정)

  • Kim, Sung-Joon;Lee, Hyeong-Won;Hwang, Jeong-Seok;Won, Chan-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.460-467
    • /
    • 2010
  • For D-WTP's sedimentation basin and distribution reservoir, and water tap the predictive models proposed tentatively herein included the models for estimating TTHM concentration in precipitated water, for treated water and for tap water, and the estimated correlation formula between treated water's TTHM concentration and tap water. As for TTHM-concentration predictive model in sedimentation water, the coefficient of determination is 0.866 for best-fitted short-term $DOC{\times}UV_{254}$ based Model (TTHM). As for $HAA_5$-concentration predictive model in sedimentation water, the coefficient of determination is 0.947 for the suitable $UV_{254}$-based model ($HAA_5$). In case of the predictive model in treated water, the coefficient of determination is 0.980 for best-fitted $DOC{\times}UV_{254}$ based model (TTHM) using coagulated waters, while the coefficient of determination is 0.983 for best-fitted $DOC{\times}UV_{254}$ based model ($HAA_5$) using coagulated waters, which described the $HAA_5$ concentration well. However, the predictive model for tap water could not be compatible with the one for treated water, only except for possibility inducing correlation formula for prediction, [i.e., the correlation formula between TTHM concentration and tap water was verified as TTHM (tap water) = $1.162{\times}TTHM$ (treated water), while $HAA_5$ (tap water) = $0.965{\times}HAA_5$ (treated water).] The correlation analysis between DOC and $KMnO_4$ consumption by process resulted in higher relationship with filtrated water, showing that its regression is $DOC=0.669{\times}KMnO_4$ consumption - 0.166 with 0.689 of determination coefficient. By substituting it to the existing DOC-based model ($HAA_5$) for treated water, the consequential model formula was made as follows; $HAA_5=8.35(KMnO_4\;consumption{\times}0.669-0.166)^{0.701}(Cl_2)^{0.577}t^{0.150}0.9216^{(pH-7.5)}1.022^{(Temp-20^{\circ}C)}$

Digestive Enzymatic and Nucleic Acidic Responses of Olive Flounder Paralichthys oilivaceus Larvae Fed Cyclopoid Copepod Paracyclopina nana (기수산 Cyclopoid 요각류 Paracyclopina nana를 섭취한 넙치 Paralichthys olivaceus 자어의 핵산 함량과 소화효소적 반응)

  • Kwon, O-Nam;Lee, Kyun-Woo;Kim, Gun-Up;Park, Heum-Gi
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.190-195
    • /
    • 2008
  • We investigated the changes in growth, digestive enzymes activities, nucleic acids contents and RNA/DNA ratio of flounder Paralichthys olivaceus larvae (C for Paracyclopina nana, A for Artemia, and M for Mix of C and A) for 14 to 28 DAH. Body length of flounder larvae showed the best in the C trial at 28 DAH. The change of nucleic acids contents showed faster in C and M trials than A trial. And RNA/DNA ratio showed the significantly faster changes in C trial than A trial. High metamorphosis rates were also observed in C and M trial. $\alpha$-amylase activities increased gradually up to 28 DAH in all trials. Total alkaline protease (TAP) activities of A trial showed the highest value to 9 mU/larvae at 26 DAH. But others trials showed lower to $5{\sim}6$ mU/larva than A trial. TAP:$\alpha$-amylase activity ratio did not significantly changed to $0.025{\sim}0.053$ in A trial during the experiments. But, C and M trials tended to gradually decrease from $0.078{\sim}0.083$ (initial) to $0.013{\sim}0.018$ (final). Therefore, it shown the ratio gradually decreased of TAP:$\alpha$-amylase activity, stability of TAP activity, and rapid change of nucleic acids in trials grown positively. Thus, because P. nana could continuously supply the optimal nutrients for flounder larvae, we suggested the supplement of the copepod to an efficient feed of the flounder larvae.

The Self-healing and Ageing Effect of OPC-GGBFS Cement in Sea-water and Tap-water (해수와 담수에서 OPC-GGBFS 시멘트의 자기치유와 재령효과)

  • Kim, Tae-Wan;Kang, Choonghyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • The paper presents experimental results of self-healing effects of OPC-GGBFS paste with cracked and uncracked specimens. The self-healing of cracked specimens is processes of crack closing with re-hydration of unhydrated in crack surface. The OPC paste with GGBFS replacement ratios of 0%, 10%, 20% and 30% were prepared having a constant water-binder ratios of 0.5. The OPC-GGBFS paste specimens immersed in tap-water and sea-water. The temperature of tap and sea-water was $5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$. The cracked specimens after deterioration were immersed for 60 days. The relationship between self-healing effect and age-effect was calculate based upon the experimental results. The self-healing effect was measured in ultrasonic pulse velocity (UPV) before and after loading. When the relative change rate of UPV is increases with the increase in GGBFS replacement ratios. Moreover, the self-healing effect is increased with the temperature of tap-water is increase. But the cracked specimens immersed in sea-water was unclear effects of different temperature. Furemore, most of the healing for OPC-GGBFS specimens immersed in tap-water and sea-water occurred during the first 30 days. The self-healing effect until 30 days is higher than that the age-effect. After 30 days, self-effect and age-effect was largely decreases. SEM/EDS analysis of crack on the surface of the specimens in tap-water were covered with aragonite, and sea-water were covered with brucite.

Radon Hazard Review of Spilled Groundwater and Tap Water in Incheon Metropolitan City Subway Station (인천광역시 지하철 역사 내 지하수 및 수돗물의 라돈 위해성 검토)

  • Lee, Yoo-Sang;Lee, Sang-Bok;Kang, Min-Seok;Jeong, Dong-Ha;Kim, Jin-Hong;Oh, Yoon-Sik;Choi, Se-Rin;Park, Jeong-Soo;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • Interest in the everyday hazards of radon has recently increased as such, this study attempted to examine the dangers of radon in spilled groundwater by comparing the radon concentrations of the drained groundwater and tap water used in recirculating systems in Incheon Subway restrooms. At five stations of Incheon Subway Line 1 and three stations of Line 2, drained groundwater is recirculated and used in restrooms for toilet flushing. Stations restroom tap water for hand washing that used as a control and the measured values of each were compared. With the cooperation of Incheon Transportation Corporation, samples of spilled groundwater and tap water were collected sealed to prevent contact with the air, and a DURRIDGE RAD7 was used as the experimental equipment. The collected samples were subjected to radial equilibration for approximately 3.5 h, at which the radon concentration reached its maximum, and then calculated as 10 measurements using the RAD7 underwater radon measurement mode. In all eight stations, the radon concentration in tap water was lower than the recommended amount. However, in an average of 7 out of the eight stations, the radon concentration in the effluent groundwater was 100 times higher than that in tap water. Since high radon concentrations in groundwater runoff can be harmful to humans, and there is no accurate standard for radon concentrations in domestic water, it is necessary to continuously monitor radon in water and prepare a guidance of recommended values.

Comparing Elder Users' Interaction Behavior to the Younger: Focusing on Tap, Move and Flick Tasks on a Mobile Touch Screen Device

  • Lim, Ji-Hyoun;Ryu, Tae-Beum
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.413-419
    • /
    • 2012
  • Objective: This study presents an observation and analysis on behavioral characteristics of old users in comparison to young users in the use of control on display interface. Background: Touch interface which allows users to control directly on display, is conceived as delight and easy way of human-computer interaction. Due to the advantage in stimulus-response ensemble, the old users, who typically experiencing difficulties in interacting with computer, would expected to have better experience in using computing machines. Method: Twenty nine participants who are over 50 years old and 14 participants who are in 20s years old were participated in this study. Three primary tasks in touch interface, which are tap, move, and flick, were delivered by the users. For the tap task, response time and point of touch response were collected and the response bias was calculated for each trial. For the move task, delivery time and the distance of finger movements were recorded for each trial. For the flick task, task completion time and flicking distance were recorded. Results: From the collected behavioral data, temporal and spatial differences between young and old users behavior were analyzed. The older users showed difficulty in completing move task requiring eye-hand coordination.

Training an Artificial Neural Network (ANN) to Control the Tap Changer of Parallel Transformers for a Closed Primary Bus

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Voltage control is an essential part of the electric energy transmission and distribution system to maintain proper voltage limit at the consumer's terminal. Besides the generating units that provide the basic voltage control, there are many additional voltage-controlling agents e.g., shunt capacitors, shunt reactors, static VAr compensators, regulating transformers mentioned in [1], [2]. The most popular one, among all those agents for controlling voltage levels at the distribution and transmission system, is the on-load tap changer transformer. It serves two functions-energy transformation in different voltage levels and the voltage control. Artificial Neural Network (ANN) has been realized as a convenient tool that can be used in controlling the on load tap changer in the distribution transformers. Usage of the ANN in this area needs suitable training and testing data for performance analysis before the practical application. This paper briefly describes a procedure of processing the data to train an Artificial Neural Network (ANN) to control the tap changer operating decision of parallel transformers for a closed primary bus. The data set are used to train a two layer ANN using three different neural net learning algorithms, namely, Standard Backpropagation [3], Bayesian Regularization [4] and Scaled Conjugate Gradient [5]. The experimental results are presented including performance analysis.

  • PDF

A Study on the guidelines for Tasty and Healthy Drinking Water Supply (청정급수를 위한 쾌적수질기준 설정에 관한 기초조사 연구)

  • 금영환;문량조;유재근
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.106-125
    • /
    • 1995
  • Recently, in accordance with elevation of life style and economics, the public demand became increasingly concerned about drinking water quality. Without an adequate supply of safe water, healthy and comfortable life could not exist. Therefore, the purpose of this study is to provide the guidelines and the basic informations to enable supply of clean, tasty and healthy drinking water acceptable for various demands. We analyzed the quality of tap water, mineral water, purified tap water using home tap water purifier. And we researched on the sense of the public complaint over the tap water. We proposed several items relating to the comfortableness of water quality and the target value. Also we presented a case of water supply system for purity and the points at problem The items and target value are as follows 1. turbidity : not more than 1 degree 2. dry residue : $30~200{\;}mg/{\ell}$ 3. hardness : $10~100mg/{\ell}$ 4. free carbon dioxide : not more than $20mg/{\ell}$ 5. $KMnO_{4}$ consumption not more than $3mg/{\ell}$ 6. odor threshold not abnormal 7. residual chlorine : not more than $0.4mg/{\ell}$ 8. water temperature' not more than $20^{\circ}C$ 9. manganese : not more than $0.01mg/{\ell}$ 10. iron : not more than $0.02mg/{\ell}$ 11. aluminum : not more than $0.1mg/{\ell}$

  • PDF

Preparation of Antioxidative Polyethylene Film and Its Effects on the Lipid Oxidation of Semi-dried Squid during Storage (항산화 성분을 함유한 PE 필름이 반건오징어 저장 중 지질산화에 미치는 영향)

  • Kim Young-Myung;Park Hyung-Woo;Byun Jee-Young;Kim Kwang-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • Antioxidative polyethylene films for food packaging were experimentally prepared by fortification of TBHQ(tertiary butylhydroquinone) and dl-a-tocopherol at the weight ratio of 0.05, 0.2 and 0.5%, respectively and laminated with nylon. TBHQ and tocopherol contents in the PE/nylon film were analyzed and the antioxidative effects of film were investigated on the lipid oxidation of semi-dried squid during storage at 5℃ and l5℃. TBHQ contents of TAP 1(TBHQ 0.05%), TAP 2(TBHQ 0.2%) and TAP 3(0.5%) were 38, 146 and 365 mg/100g, respectively. Tocopherol contents of DAP l(tocopherol 0.05%), DAP 2(tocopherol 0.2%) and DAP 3(tocopherol 0.5%) were 33, 139 and 356 mg/l00g, respectively. TBA value and POV during storage of semi-drid squid were affected both by storage temperatures and packaging films. Lipid oxidation during storage was retarded by anti-oxidative films, as TBA value of TAP 3 and DAP 3 revealed about 50% of control after storage at 5℃ for 20 days and similer effects in POV were also observed.