DOI QR코드

DOI QR Code

The Self-healing and Ageing Effect of OPC-GGBFS Cement in Sea-water and Tap-water

해수와 담수에서 OPC-GGBFS 시멘트의 자기치유와 재령효과

  • Kim, Tae-Wan (Research Institute of Industrial Technology (RIIT), Pusan National University) ;
  • Kang, Choonghyun (Dept. of Marine and Civil Engineering, College of Engineering, Chonnam National University)
  • 김태완 (부산대학교 생산기술연구소) ;
  • 강충현 (전남대학교 해양토목공학과)
  • Received : 2016.07.04
  • Accepted : 2016.12.08
  • Published : 2017.02.28

Abstract

The paper presents experimental results of self-healing effects of OPC-GGBFS paste with cracked and uncracked specimens. The self-healing of cracked specimens is processes of crack closing with re-hydration of unhydrated in crack surface. The OPC paste with GGBFS replacement ratios of 0%, 10%, 20% and 30% were prepared having a constant water-binder ratios of 0.5. The OPC-GGBFS paste specimens immersed in tap-water and sea-water. The temperature of tap and sea-water was $5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$. The cracked specimens after deterioration were immersed for 60 days. The relationship between self-healing effect and age-effect was calculate based upon the experimental results. The self-healing effect was measured in ultrasonic pulse velocity (UPV) before and after loading. When the relative change rate of UPV is increases with the increase in GGBFS replacement ratios. Moreover, the self-healing effect is increased with the temperature of tap-water is increase. But the cracked specimens immersed in sea-water was unclear effects of different temperature. Furemore, most of the healing for OPC-GGBFS specimens immersed in tap-water and sea-water occurred during the first 30 days. The self-healing effect until 30 days is higher than that the age-effect. After 30 days, self-effect and age-effect was largely decreases. SEM/EDS analysis of crack on the surface of the specimens in tap-water were covered with aragonite, and sea-water were covered with brucite.

본 연구는 OPC-GGBFS 페이스트 시험체에 균열을 발생시키지 않은 시험체와 균열을 발생시킨 시험체의 자기치유 효과에 대한 실험결과이다. 균열이 발생된 시험체의 자기치유는 균열면의 미수화 입자들의 재수화로 인한 균열면 닫힘 현상이다. OPC 페이스트에 GGBFS를 0%, 10%, 20% 그리고 30% 치환하고 물-결합재 비는 0.5로 일정하게 하였다. OPC-GGBFS 시험체를 담수(tap-water)와 해수(sea-water)에 침지하였다. 담수와 해수의 온도는 $5^{\circ}C$, $15^{\circ}C$ 그리고 $25^{\circ}C$이다. 균열을 발생시킨 시험체는 균열발생 후 60까지 침지하였다. 실험결과를 바탕으로 자기치유 효과(self-effect)와 재령효과(age-effect) 사이의 관계를 계산하였다. 자기치유 효과는 균열발생 전후의 초음파속도(UPV) 측정을 통해 이루어졌다. GGBFS 치환율이 증가하면 UPV 증가율이 증가하였다. 더구나, 침지한 담수의 온도가 증가할수록 자기치유 효과도 향상되었다. 그러나 해수에 침지한 시험체는 온도와의 관계가 명확하지 않았다. 담수와 해수에 침지한 OPC-GGBFS 시험체의 가장 높은 자기치유 효과는 침지 30일 동안 발생하였다. 침지 30일까지는 자기치유효과가 높았다. 30일 이후에는 자기치유 효과와 재령 효과가 모두 크게 감소하였다. SEM/EDS 분석을 통해 담수에 침지한 시험체의 균열에는 aragonite가, 해수에 침지한 시험체의 균열부에는 brucite가 생성된 것을 확인하였다.

Keywords

References

  1. Kim, V. T., and Nele, D. E., "Self-healing in Cementitious Materials - A Review", Materials, Vol. 6, 2013, pp. 2182-2217. https://doi.org/10.3390/ma6062182
  2. Tang, W., Kardani, O., and Cui, H., "Robust Evaluation of Self-healing Efficiency in Cementitious Materials - A Review", Constructions and Building Materials, Vol. 81, 2015, pp. 233-247. https://doi.org/10.1016/j.conbuildmat.2015.02.054
  3. Wu, M., Johannesson, B., and Geiker, M., "A Review: Self-healing in Cementitious Materials and Engineered Cementitious Composite as a Self-healing Materials", Construction and Building Materials, Vol. 28, 2012, pp. 571-583. https://doi.org/10.1016/j.conbuildmat.2011.08.086
  4. Kan, L., and Shi, H., "Investigation of Self-healing Behavior of Engineered Cementitious Composites (ECC) Materials", Construction and Building Materials, Vol. 29, 2012, pp. 348-356. https://doi.org/10.1016/j.conbuildmat.2011.10.051
  5. Jacobsen, S., and Sellevold, E. J., "Self Healing of High Strength Concrete After Deterioration by Freeze/thaw", Cement and Concrete Research, Vol. 26, 1996, pp. 55-62. https://doi.org/10.1016/0008-8846(95)00179-4
  6. Ferrara, L., Krelani, V., and Carsana, M., A "Fracture Testing Based Approach to Assess Crack Healing of Concrete with and without Crystalline Admixtures", Construction and Building Materials, Vol. 68, 2014, pp. 535-551. https://doi.org/10.1016/j.conbuildmat.2014.07.008
  7. Zhong, W., and Yao, W., "Influence of Damage Degree on Self-healing of Concrete", Construction and Building Materials, Vol. 22, 2008, pp. 1137-1142. https://doi.org/10.1016/j.conbuildmat.2007.02.006
  8. Zhu, Y., Yang, Y., and Yao, Y. "Autogenous Self-healing of Engineered Cementitious Composites Under Freeze-thaw Cycles", Construction and Building Materials, Vol. 34, 2012, pp. 522-530. https://doi.org/10.1016/j.conbuildmat.2012.03.001
  9. Şahmaran, M., Keskin, S. B., Ozerkan, G., Yaman, I. O., "Self-healing of Mechanically-loaded Self Consolidating Concretes with High Volumes of Fly Ash", Cement & Concrete Composites, Vol. 30, 2008, pp. 872-879. https://doi.org/10.1016/j.cemconcomp.2008.07.001
  10. Kim, W. J., Kim, S. T., Park, S. J., Ghim, S. Y., Chun, W. Y., "A Study on the Development of Self-Healing Smart Concrete Using Microbial Biomineralization", Journal of the Korea Concrete Institute, Vol. 21, 2009, pp. 501-511. https://doi.org/10.4334/JKCI.2009.21.4.501
  11. Lee, C. H., and Song, H. W., "Experimental Study on Artificial Crack Healing for Concrete Using Electrochemical Deposition Method", Journal of the Korea Concrete Institute, Vol. 21, 2009, pp. 409-417. https://doi.org/10.4334/JKCI.2009.21.4.409
  12. Huang, H., Ye, G., and Damidot, D., "Effect of Blast Furnace Slag on Self-healing of Microcracks in Cementitious Materials", Cement and Concrete Research, Vol. 60, 2014, pp. 68-82. https://doi.org/10.1016/j.cemconres.2014.03.010
  13. Wang, J. Y., Snoeck, D., Van Vierberghe, S., Verstraete, W., and De Belie, N., "Application of Hydrogel Encapsulated Carbonate Precipitating Bacteria for Approaching a Realistic Self-healing in Concrete", Construction and Building Materials, Vol. 68, 2014, pp. 110-119. https://doi.org/10.1016/j.conbuildmat.2014.06.018
  14. Lee, Y. S., and Ryou, J. S., "Self Healing Behavior for Crack Closing of Expansive Agent Via Granulation/film Coating Method", Construction and Building Materials, Vol. 71, 2014, pp. 188-193. https://doi.org/10.1016/j.conbuildmat.2014.08.045
  15. Hilloulin, B., Tittelboom, K. V., Gruyaert, E., Belie, N. D., Loukili, A., " Design of Polymeric Capsules for Self-healing Concrete", Cement & Concrete Composites, Vol. 55, 2015, pp. 298-307. https://doi.org/10.1016/j.cemconcomp.2014.09.022
  16. Jiang, Z., Li, W., and Yuan, Z., "Influence of Mineral Additives and Environmental Conditions on the Self-healing Capabilities of Cementitious Materials", Cement & Concrete Composites, Vol. 57, 2015, pp. 116-127. https://doi.org/10.1016/j.cemconcomp.2014.11.014
  17. Qian, S. Z., Zhou, J., and Schlangen, E., "Influence of Curing Condition and Precracking Time on the Self-healing Behavior of Engineered Cementitious Composites", Cement & Concrete Composites, Vol. 32, 2010, pp. 686-693. https://doi.org/10.1016/j.cemconcomp.2010.07.015
  18. Sahmaran, M., Yildirim, G., Erdem, T. K., "Self-healing Capability of Cementitious Composites Incorporating Different Supplementary Cementitious Materials", Cement & Concrete Composites, Vol. 35, 2016, pp. 89-101.
  19. Sisomphon, K., Copuroglu, O., Koenders, E. A. B., "Effect of Exposure Conditions on Self Healing Behavior of Strain Hardening Cementitious Composites Incorporating Various Cementitious Materials", Construction and Building Materials, Vol. 42, 2013, pp. 217-224. https://doi.org/10.1016/j.conbuildmat.2013.01.012
  20. Sisomphon, K., Copuroglu, O., Koenders, E. A. B. "Self-healing of Surface Cracks in Mortars with Expansive Additive and Crystalline Additive", Cement & Concrete Composites, Vol. 34, 2012, pp. 566-574. https://doi.org/10.1016/j.cemconcomp.2012.01.005
  21. Yang, Y., Yang, E. V., and Li, C., "Autogenous Healing of Engineered Cementitious Composites at Early Age", Cement and Concrete Research, Vol. 41, 2011, pp. 176-183. https://doi.org/10.1016/j.cemconres.2010.11.002
  22. Stefan, J., Jacques, M., and Hugues, H., "SEM Observations of the Microstructure of Frost Deteriorated and Self-healed Concretes", Cement and Concrete Research, Vol. 25, 1995, pp. 1781-1790. https://doi.org/10.1016/0008-8846(95)00174-3
  23. Reinhardt, H., and Jooss, M., "Permeability and Self-healing of Cracked Concrete as a Function of Temperature and Crack Width", Cement and Concrete Research, Vol. 33, 2003, pp. 981-985. https://doi.org/10.1016/S0008-8846(02)01099-2
  24. Palin, D., Wiktor, V., Jonkers, H. M., "Autogenous Healing of Marine Exposed Concrete: Characterization and Quantification through Visual Crack Closure", Cement and Concrete Research, Vol. 73, 2015, pp. 17-24. https://doi.org/10.1016/j.cemconres.2015.02.021
  25. Tittelboom, K. V., Gruyaert, E., Rahier, H., Belie, N. D., "Influence of Mix Composition on the Extent of Autogenous Crack Healing by Continued Hydration or Calcium Carbonate Formation", Construction and Building Materials, Vol. 37, 2012, pp. 349-359. https://doi.org/10.1016/j.conbuildmat.2012.07.026
  26. Liu, S., and Zuo, M., "Influence of Slag and Fly Ash on the Self-healing Ability of Concrete", Advanced Materials Research, Vol. 306-307, 2011, pp. 1020-1023. https://doi.org/10.4028/www.scientific.net/AMR.306-307.1020
  27. Huang, H., Ye, G., and Damidot, D., "Characterization Anf Quantification of Self-healing Behaviors of Microcracks Due to Further Hydration in Cement Paste", Cement and Concrete Research, Vol. 52, 2013, pp. 71-81. https://doi.org/10.1016/j.cemconres.2013.05.003
  28. Edvardsen, C. "Water Permeability and Autogenous Healing of Cracks in Concrete", American Concrete Institute Materials Journal, Vol. 96, 1999, pp. 448-454.
  29. In, C. W., Holland, R. B., Kim, J. Y. Kurtis, K. E., Kahn, L. F., and Jacobs, L. J., "Monitoring and Evaluation of Self-healing in Concrete Using Diffuse Ultrasound", NDT&E international, Vol. 57, 2013, pp. 36-44. https://doi.org/10.1016/j.ndteint.2013.03.005
  30. Conjeaud, M. L., "Mechanism of Sea Water Attack on Cement Mortar", ACI Special Publication 65, 1980, pp. 39-62.
  31. Buenfeld, N., and Newman, J., "The Development and Stability of Surface Layers on Concrete Exposed to Sea-water", Cement and Concrete Research. Vol. 16, 1986, pp. 721-732. https://doi.org/10.1016/0008-8846(86)90046-3