• Title/Summary/Keyword: Tanker

Search Result 339, Processing Time 0.024 seconds

Application of Algebraic Stress Model to the Calculation of the Viscous Flow around a Ship (대수응력 난류 모델의 선체주위 점성유동해석에의 적용)

  • Oh K. J.;Choi J. E.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • The flow around a ship is complex, especially, at the stern region of a full ship, where highly curved streamlines, hook-shaped iso-velocity contours, and strong secondary flow exist. To resolve this complex flow, an Algebraic Stress Model(ASM) is applied. The calculations are performed for the HSVA Tanker. The results are improved comparing with those of standard k-ε turbulence model, but still show a little difference from the experiments.

  • PDF

Hydrodynamic analysis of oil tanker method of construction applied in Seosan reclamation project (서산 간척 사업에 활용된 유조선 공법의 유체역학적 해석)

  • Choe, Yeon-Ju;O, Dong-Geon
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.556-561
    • /
    • 2014
  • 본 연구에서는 유조선 공법의 유체역학적 타당성을 검증하고자 한다. EDISON_CFD를 이용하여 간단화한 서산 간월호의 간척 이전 모습을 모델링하였다. 방조제 모델에서의 난류 유동을 방조제 사이에서의 유속과 사이에서 받는 압력의 분포를 통해 유조선 공법이 실제로 방조제 건설에 도움이 될 수 있는지에 대해 평가했다.

  • PDF

Saudi Rabigh Port Jetty #2 건설 선박운항 안전성평가

  • Baek, Mi-Seon;Seo, Tae-Ho;Gong, In-Yeong;Sin, Su-Yeon;Jeong, Mi-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.518-520
    • /
    • 2013
  • Saudi Rabigh Port 남측에 Rabigh Jetty #2를 건설하려는 계획에 따라 20,000 DWT급 Tanker 부터 120,000 DWT Tanker의 계류가 가능한 부두 1선석이 건설될 예정이다. 이러한 해외 항만 건설에 대한 선박운항안전성 평가를 위하여 국내 해상교통안전진단 시행지침을 적용하여 수행하였으며 이에 대한 평가 사례를 소개하고자 한다.

  • PDF

유조선의 부두 하역 작업시 접지 안전성 연구와 적용

  • Baek, Myeong-Gi;Jo, Won-Cheol;Lee, Tae-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.771-774
    • /
    • 2008
  • This study shows the new findings against a electrical bonding risk between the tanker and the jetty they've generally done. According to this new theory, a new preventive plan will be proposed. Also, a new preventive plan will be shown as the result of practical implementation in which it could guide the same kind of working people.

  • PDF

Nonlinear Motion Analysis of FPSO and Shuttle Tanker in a Tandem Configuration (탠덤 배치된 FPSO와 셔틀탱커의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young;Shin, Hyung-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.560-567
    • /
    • 2006
  • FPSO and shuttle tanker are connected to each other by a mooring hawser and a loading hose through which cargo oil is off-loaded. Even in mild sea-state. environmental loads can cause unstable large drift motions between two vessels in tandem off-loading operations, which may result in collision incidents. Accordingly. the analysis on the relative motion between two vessels due to the environmental loads should be investigated in initial design stage. In this study, the low speed maneuvering equation is employed to simulate nonlinear motions of FPSO and shuttle tanker. Low frequency wave drift forces including hydrodynamic interactions between two vessels are evaluated by near field approaches. Current loads are determined by mathematical model of MMG and wind loads are calculated by employing the wind spectrum according to the guidelines of API-RP2A. Mooring forces produced by turret mooring lines and a flexible hawser are modeled quasi-statically by catenary equations. The effect of environmental loads that affect nonlinear motion is investigated through variation in their magnitudes and the nonlinear motions between FPSO and shuttle tanker are simulated under wave, current and wind in time domain.

A Study on the Safe Maneuvering of a G/T 100,000 Ton LNG Vessel by Using Her Control Surface through a Narrow Channel

  • Yoon, Jeom-Dong;Seol, Dong-Il
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.5
    • /
    • pp.423-433
    • /
    • 2000
  • Nowadays LNG has been beginning to take the place of petroleum as fuel all over the world and VLCC of LNG will take the same sea routes that had been used by VLCC tankers of petroleum in the last part of the 20th century. The transportation of LNG by a VLCC include more dangerous nature of sea peril than that of petroleum. We already know the dimensions of a disaster a LNG tanker could bring about in the case of the LNG tanker, Yuyo-Maru No. 10 in the Tokyo Bay of Japan in 1974. From the point of safety when we construct a LNG base or LNG pier in the base, the appropriate government authority and constructing company had better take sea pilots or some ships handling experts to participate in a prior consultation of the design of the project. A G/T 100,000 ton LNG base and pier were completed in November of 1996 in Inchon harbour in Korea and VLCC of LNG of G/T 100,000 ton class have been entering into the base ever since. This study was started and completed In comply with the requisition of the Sea Pilot Association of Inchon harbour in advance of the opening of the LNG base. As the entrance and exit channels leading to Inchon harbour were constructed in the years of 1930s, it was one of the most pressing works for Inchon sea pilots in 1996 to certify the method of safe passing maneuvering of a G/T 100,000 ton of LNG tanker through the Pudo narrow channel prior to commencing actual piloting of the VLCC of LNG. The authors made some mathematical models computing maneuvering of a vessel changing her course with her control surface through a narrow channel and computed maneuvering of a G/T 100,000 ton of LNG tanker and also made maneuvering simulations of the vessel by a desk-top simulator. The results of computations and simulations are well coincided with each other in qualitative aspects to assure safe passing of the VLCC of LNG.

  • PDF

Structural Safety Evaluation for 75,000 TDW Chemical Tanker Applied Common Structural Rules (CSR을 적용한 75,000 TDW 화학제품 운반선의 구조 안전성 평가)

  • Sim, Ye-Eun;Haa, Chung-In;Nam Gung, Mun;Kim, Gi-Jae;Lee, Kyung-Seok;Kim, Man-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.1-7
    • /
    • 2013
  • In past decades, a maximum standard vessel size for chemical tankers is not normally larger than 55,000 TDW due to the characteristic of chemical product shipment which is so variable but small quantity unlike single product carries such as crude oil tankers. These days, as demand of very large chemical tanker is rising due to the change of market trend of chemical product shipment, 75,000 TDW class chemical tanker has been developed. The newly developed vessel's structure has been designed based on CSR (Common Structural Rule) for double hull oil tankers (hereafter CSR) published by IACS (International Association of Classification Societies). However, due to the large difference from typical oil tankers, many items should be specially considered such as on deck transverse and corrugated bulkheads. In addition, two longitudinal bulkheads without upper stool have been constructed in order to maximise the number of cargo tanks and the volume of each cargo tanks. In this study, key word of the vessel has been briefly reviewed and the structural reliability of the proposed vessel has been investigated.

  • PDF

Development of Automated Algorithm for Compartment Arrangement of Oil Tanker (유조선의 구획배치 자동화 알고리즘 개발)

  • Song, Ha-Cheol;Na, Seung-Su;Jo, Du-Yeon;Shim, Cheon-Sik;Lee, Gang-Hyeon;Jeong, Sol;Heo, Joo-Ho;Jeong, Tae-Seok;Lee, Chul-Ho;Jo, Young-Chun;Kim, Dong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Nowadays, optimum structural design techniques based on CSR have been developed and applied to the preliminary design stage focused on minimum weight and minimum construction cost of ship structure. Optimum structural design algorithm developed before could minimize weight and cost on fixed compartment arrangement. However, to develop more efficient design technique, a designer needs to combine optimized compartment arrangement with optimized ship structural design because compartment arrangement has a large effect on structural design according to the change of still water bending moment as a consequence of compartment arrangement change. In this study, automated algorithm for compartment arrangement of an oil tanker is developed to apply preliminary structural design. The usefulness of developed algorithm is verified with Aframax oil tanker constructed by STX shipbuilding Co.Ltd..