• Title/Summary/Keyword: Tangible Technology

Search Result 205, Processing Time 0.033 seconds

Unpacking the Potential of Tangible Technology in Education: A Systematic Literature Review

  • SO, Hyo-Jeong;HWANG, Ye-Eun;WANG, Yue;LEE, Eunyul
    • Educational Technology International
    • /
    • v.19 no.2
    • /
    • pp.199-228
    • /
    • 2018
  • The main purposes of this study were (a) to analyze the research trend of educational use of tangible technology, (b) to identify tangible learning mechanisms, and potential benefits of learning with tangible technology, and (c) to provide references and future research directions. We conducted a systematic literature review to search for academic papers published in recent five years (from 2013 to 2017) in the major databases. Forty papers were coded and analyzed by the established coding framework in four dimensions: (a) basic publication information, (b) learning context, (c) learning mechanism, and (d) learning benefits. Overall, the results show that tangible technology has been used more for young learners in the kindergarten and primary school contexts mainly for science learning, to achieve both cognitive and affective learning outcomes, by coupling tangible objects with tabletops and desktop computers. From the synthesis of the review findings, this study suggests that the affordances of tangible technology useful for learning include embodied interaction, physical manipulations, and the physical-digital representational mapping. With such technical affordances, tangible technologies have the great potential in three particular areas in education: (a) learning spatial relationships, (b) making the invisible visible, and (c) reinforcing abstract concepts through the correspondence of representations. In conclusion, we suggest some areas for future research endeavors.

Tangible Tele-Meeting in Tangible Space Initiative

  • Lee, Joong-Jae;Lee, Hyun-Jin;Jeong, Mun-Ho;Jeong, SeongWon;You, Bum-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.762-770
    • /
    • 2014
  • Tangible Space Initiative (TSI) is a new framework that can provide a more natural and intuitive Human Computer Interface for users. This is composed of three cooperative components: a Tangible Interface, Responsive Cyber Space, and Tangible Agent. In this paper we present a Tangible Tele-Meeting system in TSI, which allows people to communicate with each other without any spatial limitation. In addition, we introduce a method for registering a Tangible Avatar with a Tangible Agent. The suggested method is based on relative pose estimation between the user and the Tangible Agent. Experimental results show that the user can experience an interaction environment that is more natural and intelligent than that provided by conventional tele-meeting systems.

Tangible Space and Interactive Technology

  • Yoon, Joong-Sun;Yoh, Myeung-Sook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2687-2692
    • /
    • 2003
  • Recent advancement in information technology requires new interpretations for the space among human, machines and environment. Investigation of space between information and human could lead to the proper ways, in which human and machines meet. Various concepts regarding space have been explored in terms of “virtual reality in cyberspace” and “embodiment in tangible space.” “Mom (embodiment),” space, virtuality, sensation/perception, and interactive technology are some of the key ideas to be explored. Human “Mom” is such a fundamental membrane through which human can interact with the environment physically and mentally. An embodied interaction paradigm, based on “Mom,” is investigated. This leads to interactive technology paradigm. Sound space is an invisible but a tangible space in a sense that it travels in emotional tremors and stimulates new sensations and perceptions. Three cases are introduced to experiment such tangible space as a new and proper interactive paradigm. Also, a historical model of interaction is reviewed, which includes electrical, symbolic, textual, graphical, tangible, and social interaction.

  • PDF

Tactile feedback in tangible space

  • Yun, Seung-Kook;Kang, Sung-Chul;Yang, Gi-Hun;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1802-1807
    • /
    • 2005
  • Tangible interface can be understood as a newly defined concept, which can provide an effective and seamless interaction between the human as a subjective existence and the cyberspace as an objective existence. Tactile sensation is essential for many exploration and manipulation tasks in the tangible space. In this paper, we suggest the design of an integrated tactile sensor-display system that provides both of sensing and feedback with kinesthetic force, pressure distribution, vibration and slip/stretch. A new tactile sensor with PDVF strips and display system with bimorph actuators has been developed and integrated by developed signal processing algorithm. In the scenario of haptic navigation in the tangible space, tactile feedback system is successfully experimented.

  • PDF

Tangible Space Initiative

  • Ahn, Chong-Keun;Kim, Lae-Hyun;Ha, Sung-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1053-1056
    • /
    • 2004
  • Research in Human Computer Interface (HCI) is towards development of an application environment able to deal with interactions of both human and computers that can be more intuitive and efficient. This can be achieved by bridging the gap between the synthetic virtual environment and the natural physical environment. Thus a project called Tangible Space Initiative (TSI) has been launched by KIST. TSI is subdivided into Tangible Interface (TI) which controls 3D cyber space with user's perspective, Responsive Cyber Space (RCS) which creates and controls the virtual environment and Tangible Agent (TA) which senses and acts upon the physical interface environment on behalf of any components of TSI or the user. This paper is a brief introduction to a new generation of Human Computer Interface that bring user to a new era of interaction with computers in the future.

  • PDF

Towards Tangible Shopping in Virtual World

  • Syamsuddin, Muhammad Rusdi;Juasiripukdee, Pan;Kwon, Yong-Moo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.373-375
    • /
    • 2009
  • This paper introduces the concept of Tangible Shopping conducting in virtual world. The main idea of this paper is to combine the concept of web 2.0 mashup into shopping activities in virtual world. Feature of annotation and web browsing are also included in this concept. This research aims to enhance web shopping activities from the conventional approach into new way which deliver tangible shopping experiences to users. At the beginning, we review the state-of-the-art of virtual worlds and Web 2.0 Mashup. Next, we review our related work. Then, we address the design and implementation of tangible shopping in virtual worlds.

  • PDF

Webized Tangible Space (웹-기반 Tangible Space)

  • Ko, Heedong;Seo, Daeil;Yoo, Byounghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.77-85
    • /
    • 2017
  • Tangible Space is a new emerging interaction space with mobile AR/VR computing and ubiquitous computing environment with IoT. Tangible Space spans from a physical environment augmented with virtual entities to immersive virtual environments mirroring the physical environment. Interacting with Tangible Space is logged just like interacting with the Web. By webizing Tangible Space, we can gain persistence as a by-product so that human life experience in the physical environment can be logged and shared just like the information being created and shared in the current Web. The result is a powerful future direction of the web from a World Wide Web of Information to World Wide Web of Life experiences.

MULTI-SENSOR DATA FUSION FOR FUTURE TELEMATICS APPLICATION

  • Kim, Seong-Baek;Lee, Seung-Yong;Choi, Ji-Hoon;Choi, Kyung-Ho;Jang, Byung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.359-364
    • /
    • 2003
  • In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle's position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satellite visibility environment exists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS(Global Positioning System), and DMI (Distance Measurement Indicator) is required to provide the vehicle's position to service provider and driver behind the wheel. The multi-sensor fusion is implemented via algorithm based on Kalman filtering technique. Navigation accuracy can be enhanced using this filtering approach. For the verification of fusion approach, land vehicle test was performed and the results were discussed. Results showed that the horizontal position errors were suppressed around 1 meter level accuracy under simulated non-GPS availability environment. Under normal GPS environment, the horizontal position errors were under 40㎝ in curve trajectory and 27㎝ in linear trajectory, which are definitely depending on vehicular dynamics.

Efficient Tiled Stereo Display System for Tangible Meeting

  • Kim, Ig-Jae;Ahn, Sang-Chul;Kim, Hyoung-Gon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1239-1241
    • /
    • 2007
  • In this paper, we present a tiled display system for tangible meeting. We built our system as a distributed system and use GPU based warping and image blending technique for real-time processing. For efficiency, we update specific area only, where the remote user exist, in real-time and blended it with static panoramic image of remote site.

  • PDF