• 제목/요약/키워드: Tangent Modulus

검색결과 93건 처리시간 0.023초

Determination of Frequency Independent Critical Concentration of Xathan and Carob Mixed Gels

  • Yoon, Won-Byong;Gunasekaran, Sundaram
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.1069-1071
    • /
    • 2007
  • The frequency independent critical concentration (Cc) of xanthan and carob (X/C) mixed gel was determined based on the Winter-Chambon's theory. X/C mixed (X/C=1:1 ratio) gels were prepared from 0.1 to 1% of concentration. The linear viscoelastic properties, i.e., storage and loss modulus, of X/C mixed gel at $20^{\circ}C$ were measured by frequency sweep tests. The frequency independence of tangent function of phase angle (tan ${\delta}$) of X/C mixed gels was graphically determined from the intersection of the plot of phase angle against concentration at varied frequencies. The intersection (C=0.43%) was considered to be Cc of X/C mixed gel.

Activated Physical Properties at Air-Polymer Interface

  • Kajiyama, Tisato
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.109-113
    • /
    • 2007
  • The surface molecular motion of monodisperse polystyrene (PS) films was examined using scanning vis-coelasticity microscopy (SVM) in conjunction with lateral force microscopy (LFM). The dynamic storage modulus, E', and loss tangent, $tan\delta$, at a PS film surface with number-average molecular weights, $M_n$, smaller than 30 k were found to be smaller and larger than those for the bulk sample, even at room temperature, meaning that the PS surface is in a glass-rubber transition or fully rubbery sate at this temperature when the $M_n$ is small. In order to quantitatively elucidate the dynamics of the molecular motion at the PS surface, SVM and LFM measurements were performed at various temperatures. The glass transition temperature, $T_g$, at the surface was found to be markedly lower than the bulk $T_g$, and this discrepancy between the surface and bulk became larger with decreasing $M_n$. Such an intensive activation of the thermal molecular motion at the PS surfaces can be explained in terms of an excess free volume in the vicinity of the film surface induced by the preferential segregation of the chain end groups.

Haringx의 전단변형 이론을 고려한 부분강절 뼈대구조의 비탄성 좌굴해석 (Inelastic Buckling Analysis of Semi-rigid Frames with Shear Deformations by Haringx's Theories)

  • 민병철
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.64-71
    • /
    • 2014
  • The generalized tangential stiffness matrix of semi-rigid frame element with shear deformations based on Haringx's shear theory is newly derived and compared with the previous study based on Engesser's shear theory. Also, linearized elastic and geometric stiffness matrices are newly presented from the exact tangential stiffness matrix. In oder to obtain the inelastic system buckling load of shear flexible semi-rigid frame structure, the Ef method by tangential modulus theory is adopted and the FE analysis programs are developed. Finally, the shear and semi-rigid effects of system bucking are investigated by two numerical examples.

콘크리트 변형률국소화영역의 유한요소모델링 (Finite Element Modeling of Strain Localization Zone in Concrete)

  • 송하원;나웅진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.53-60
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develope a consistent algorithm for the finite element modeling of localized zone in the analysis of the strain-localization in concrete. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion which can consider nonlinear strain softening behavior of concrete after peak-stress is introduce. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is derived. Using finite element program implemented with the developed algorithms, strain localization behaviors for the different sizes of concrete specimen under compression are simulated.

  • PDF

수직진동 rheometer를 이용한 전도유체의 점탄성 연구 (Visocoelasticity of Electrorhedlogical Fluid from Vertical Oscillation Rheometer)

  • 김상국;김동찬;최영진;조민성
    • 한국재료학회지
    • /
    • 제6권11호
    • /
    • pp.1067-1073
    • /
    • 1996
  • 본 연구에서는 직접 제작된 전도유체(electrorheological fluid)용 수직진동 rhemeter 기기상의 구조 해석 및 실험을 실시하였다. 수직진동 rheomether는 간단하게 제작이 가능하고, 고전압 발생장치를 연결하므로 전동유체의 점탄성 특성을 비교적 쉽게 측정할 수 있다. Rheometer의 구조적 변수와 측정된 힘, 변형 등을 이용하여 복소 점도(complex viscosity), 복소 전단 변형률(complex shear modulus), loss tangent 등의 선형 점탄성 물질 함수를 직접 계산할 수 있으며, corn starch를 polybutene/kerosene에 분산시킨 전동유체를 이용하여 전기장하의 점탄성을 측정하였다.

  • PDF

A variable layering system for nonlinear analysis of reinforced concrete plane frames

  • Shuraim, Ahmed B.
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.17-34
    • /
    • 2001
  • An improved method has been developed for the computation of the section forces and stiffness in nonlinear finite element analysis of RC plane frames. The need for a new approach arises because the conventional technique may have a questionable level of efficiency if a large number of layers is specified and a questionable level of accuracy if a smaller number is used. The proposed technique is based on automatically dividing the section into zones of similar state of stress and tangent modulus and then numerically integrating within each zone to evaluate the sectional stiffness parameters and forces. In the new system, the size, number and location of the layers vary with the state of the strains in the cross section. The proposed method shows a significant improvement in time requirement and accuracy in comparison with the conventional layered approach. The computer program based on the new technique has been used successfully to predict the experimental load-deflection response of a RC frame and good agreement with test and other numerical results have been obtained.

평면프레임 구조의 개선된 좌굴설계 (Improved Stability Design of Plane Frame Members)

  • 김문영;송주영;경용수
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.225-237
    • /
    • 2006
  • 김 등(2005a, b)의 연구를 확장시켜 시스템 좌굴 고유치해석법을 이용한 유효좌굴길이 산정법과 2차 탄성해석기법을 이용한 2차모멘트를 이용하여 축력과 휨모멘트를 받는 라멘구조의 보-기둥부재에 대한 개선된 좌굴설계법을 제안한다. 이를 위하여 먼저 국내도로교설계기준, AISC-LRFD, SRC의 각 설계기준에 제시된 내하력 기준식을 이용하여 응력-변형율 관계를 유도하고, 이를 이용한 탄성 및 비탄성 좌굴 고유치해석을 이용한 유효좌굴길이 산정법을 고찰한다. 또한 라멘구조에 대하여 AISC-LRFD에서 제시하고 있는 좌굴 안정성 검토식과 본 연구에서 제시하는 안정성 검토식을 해석예제를 통하여 비교, 검토를 행한다.

수직 진동형 Rheometer를 이용한 복합레진의 유변학적 성질의 측정 (RHEOLOGICAL CHARACTERIZATION OF COMPOSITES USING A VERTICAL OSCILLATION RHEOMETER)

  • 이인복;조병훈;손호현;이상탁;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제29권6호
    • /
    • pp.489-497
    • /
    • 2004
  • Objective: The purpose of this study was to investigate the viscoelastic properties related to handling characteristics of composite resins, Methods: A custom designed vertical oscillation rheometer (VOR) was used for rheological measurements of composites. The VOR consists of three parts: (1) a measuring unit, (2) a deformation induction unit and (3) a force detecting unit, Two medium viscous composites, Z100 and Z250 and two packable composites, P60 and SureFil were tested. The viscoelastic material function, including complex modulus $E^{*}$ and phase angle ${\delta}$, were measured. A dynamic oscillatory test was used to evaluate the storage modulus (E'), loss modulus (E") and loss tangent ($tan{\delta}$) of the composites as a function of frequency ($\omega$) from 0.1 to 20 Hz at $23^{\circ}C$. Results: The E' and E" increased with increasing frequency and showed differences in magnitude between brands. The $E^{*}s$ of composites at ${\omega}{\;}={\;}2{\;}Hz$, normalized to that of Z100, were 2.16 (Z250), 4,80 (P60) and 25.21 (SureFil). The magnitudes and patterns of the change of $tan{\delta}$ of composites with increasing frequency were significantly different between brands. The relationships between the complex modulus $E^{*}$, the phase angle ${\delta}$ and the frequency \omega were represented by frequency domain phasor form, $E^{*}{\;}(\omega){\;}={\;}E^{*}e^{i{\delta}}{\;}={\;}E^{*}{\angle}{\delta}$. Conclusions: The viscoelasticity of composites that influences handling characteristics is significant different between brands, The VOR is a relatively simple device for dynamic, mechanical analysis of high viscous dental composites. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composites.

Ultimate behavior and ultimate load capacity of steel cable-stayed bridges

  • Choi, D.H.;Yoo, H.;Shin, J.I.;Park, S.I.;Nogami, K.
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.477-499
    • /
    • 2007
  • The main purpose of this paper is to investigate the ultimate behavior of steel cable-stayed bridges with design variables and compare the validity and applicability of computational methods for evaluating ultimate load capacity of cable-stayed bridges. The methods considered in this paper are elastic buckling analysis, inelastic buckling analysis and nonlinear elasto-plastic analysis. Elastic buckling analysis uses a numerical eigenvalue calculation without considering geometric nonlinearities of cable-stayed bridges and the inelastic material behavior of main components. Inelastic buckling analysis uses an iterative eigenvalue calculation to consider inelastic material behavior, but cannot consider geometric nonlinearities of cable-stayed bridges. The tangent modulus concept with the column strength curve prescribed in AASHTO LRFD is used to consider inelastic buckling behavior. Detailed procedures of inelastic buckling analysis are presented and corresponding computer codes were developed. In contrast, nonlinear elasto-plastic analysis uses an incremental-iterative method and can consider both geometric nonlinearities and inelastic material behavior of a cable-stayed bridge. Proprietary software ABAQUS are used and user-subroutines are newly written to update equivalent modulus of cables to consider geometric nonlinearity due to cable sags at each increment step. Ultimate load capacities with the three analyses are evaluated for numerical models of cable-stayed bridges that have center spans of 600 m, 900 m and 1200 m with different girder depths and live load cases. The results show that inelastic buckling analysis is an effective approximation method, as a simple and fast alternative, to obtain ultimate load capacity of long span cable-stayed bridges, whereas elastic buckling analysis greatly overestimates the overall stability of cable-stayed bridges.

A modified shear strength reduction finite element method for soil slope under wetting-drying cycles

  • Tu, Yiliang;Zhong, Zuliang;Luo, Weikun;Liu, Xinrong;Wang, Sui
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.739-756
    • /
    • 2016
  • The shear strength reduction finite element method (SSRFEM) is a powerful tool for slope stability analysis. The factor of safety (FOS) of the slope can be easily calculated only through reducing effective cohesion (c′) and tangent of effective friction angle ($tan{\varphi}^{\prime}$) in equal proportion. However, this method may not be applicable to soil slope under wetting-drying cycles (WDCs), because the influence of WDCs on c′ and $tan{\varphi}^{\prime}$ may be different. To research the method of estimating FOS of soil slopes under WDCs, this paper presents an experimental study firstly to investigate the effects of WDCs on the parameters of shear strength and stiffness. Twelve silty clay samples were subjected to different number of WDCs and then tested with triaxial test equipment. The test results show that WDCs have a degradation effect on shear strength (${\sigma}_1-{\sigma}_3)_f$, secant modulus of elasticity ($E_s$) and c′ while little influence on ${\varphi}^{\prime}$. Hence, conventional SSRFEM which reduces c′ and $tan{\varphi}^{\prime}$ in equal proportion cannot be adopted to compute the FOS of slope under conditions of WDCs. The SSRFEM should be modified. In detail, c′ is merely reduced among shear strength parameters, and elasticity modulus is reduced correspondingly. Besides, a new approach based on sudden substantial changes in the displacement of marked nodes is proposed to identify the slope failure in SSRFEM. Finally, the modified SSRFEM is applied to compute the FOS of a slope example.