• Title/Summary/Keyword: Tandem repeat

Search Result 133, Processing Time 0.019 seconds

Molecular cloning and characterization of an antigenic protein with a repeating region from clonorchis sinensis

  • Kim, Tae-Yun;Kang, Shin-Yong;Ahn, Il-Young;Cho, Seung-Yull;Hong, Sung-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • In the course of immunoscreening of Clonorchis sinensis cDNA library, a cDNA CsRP12 containing a tandem repeat was isolated. The cDNA CsRP 12 encodes two putative peptides of open reading frames (ORFs) 1 and 2 (CsRP12-1 and -2). The repetitive region is composed of 15 repeats of 10 amino acids. Of the two putative peptides, CsRP12-1 was proline-rich and found to have homologues in several organisms. Recombinant proteins of the putative peptides were bacterially produced and purified by an affinity chromatography Recombinant CsRP12-1 protein was recognized by sera of clonorchiasis patients and experimental rabbits, but recombinant CsRP 12-2 was not. One of the putative peptide, CsRP12-1, is designated CsPRA, proline-rich antigen of C. sinensis. Both the C-termini of CsRP12-1 and -2 were bacterially produced and analysed to show no antigenicity. Recombinant CsPRA protein showed high sensitivity and specificity. In experimental rabbits, IgG antibodies to CsPRA was produced between 4 and 8 weeks after the infection and decreased thereafter over one you. These results indicate that CsPRA is equivalent to a natural protein and a useful antigenic protein for serodiagnosis of human clonorchiasis.

  • PDF

Quadruplex Genotype Analysis at HumTH01, HumTPOX, HumCSF1PO and Amelogenin Loci by FoLT-PCR (FoLT-PCR에 의한 유전자형 (HumTH01, HumTPOX, HumCSF1PO & Amelogenin) 분석)

  • Lee, Yang-Han;Lim, Si-Keun;Kang, Pil-Won;Choi, Dong-Ho;Yoon, Song-Ro;Han, Myun-Soo
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.260-264
    • /
    • 1999
  • A simple and rapid procedure, called FoLT-PCR(Formamide Low Temperature-Polymerase Chain Reaction) was applied to amplifying DNA directly from various forensic biological evidences including human blood, saliva, hair root, or semen without any DNA preparative steps. We added washing step with non-ionic detergent, 1% Triton X-100, and used Taq DNA polymerase instead of Tth DNA polymerase to amplify 3 STR loci and gender allele simultaneouly. Optimal concentration of formamide and annealing temperature were determined empirically to 8%(v/v), and $48^{\circ}C$ respectively. We also compared this method with standard PCR.

  • PDF

Analysis of the Short Tandem Repeat Loci for STRX1, HPRTB, ARA, DYS390, DYS392 and DYS393 in Koreans

  • Seol, Hye-Won;Zaw Tun;Katsuya Honda;Shogo Misawa;Park, Kyung-Sook
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.237-241
    • /
    • 2001
  • Three STR loci (STRX1[AGAT]$_{n}$, HPRTB[AGAT]$_{n}$ and ARA[AGC]$_{n}$) on X chromosome and three other STR loci (DYS390[CTG(A)T]$_{n}$, DYS392[ATT]$_{n}$ and DYS39[GATA]$_{n}$) on Y chromosome were analyzed in 154 unrelated healthy Korean subjects. Four loci (STRX1, HPRTB, DYS390 and DYS393) were amplified by quadruplex polymerase chain reaction (PCR) using fluorescent labeled primers (FLP). ARA and DYS392 were amplified separately using single PCR, similarly by using FLP. They were then run in an automated DNA sequencer and were analyzed with Genescan software. We found 7 alleles (308-332 bp) in STRX1, 7 alleles (275-299 bp) in HPRTB, 16 alleles (252-315 bp) in ARA, 6 alleles (203-223 bp) in DYS390, 7 alleles (245-263bp) in DYS392 and 5 alleles (116-132 bp) in DYS393. The *13(34%), *13(5l%), *23 (l8%), *23(50%), *14(39%) and *13(40%) alleles were observed to be the highest frequencies of STRX1, HPRTB, ARA, DYS390, DYS392 and DYS393, respectively. The detection of STR loci on sex chromosomes by quadruplex PCR allows simple determination of sex and identification of an individual. individual.

  • PDF

An unusual de novo duplication 10p/deletion 10q syndrome: The first case in Korea

  • Lee, Bom-Yi;Park, Ju-Yeon;Lee, Yeon-Woo;Oh, Ah-Rum;Lee, Shin-Young;Choi, Eun-Young;Kim, Moon-Young;Ryu, Hyun-Mee;Park, So-Yeon
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • We herein report an analysis of a female baby with a de novo dup(10p)/del(10q) chromosomal aberration. A prenatal cytogenetic analysis was performed owing to abnormal ultrasound findings including a choroid plexus cyst, prominent cisterna magna, and a slightly medially displaced stomach. The fetal karyotype showed additional material attached to the terminal region of chromosome 10q. Parental karyotypes were both normal. At birth, the baby showed hypotonia, upslanting palpebral fissures, a nodular back mass, respiratory distress, neonatal jaundice and a suspicious polycystic kidney. We ascertained that the karyotype of the baby was 46,XX,der(10)($pter{\rightarrow}q26.3::p11.2{\rightarrow}pter$) by cytogenetic and molecular cytogenetic analyses including high resolution GTG-and RBG-banding, fluorescence in situ hybridization, comparative genomic hybridization, and short tandem repeat marker analyses. While almost all reported cases of 10p duplication originated from one of the parents with a pericentric inversion, our case is extraordinarily rare as the de novo dup(10p)/del(10q) presumably originated from a rearrangement at the premeiotic stage of the parental germ cell or from parental germline mosaicism.

Choosing Optimal STR Markers for Quality Assurance of Distributed Biomaterials in Biobanking

  • Chung, Tae-Hoon;Lee, Hee-Jung;Lee, Mi-Hee;Jeon, Jae-Pil;Kim, Ki-Sang;Han, Bok-Ghee
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • The quality assurance (QA) is of utmost importance in biobanks when archived biomaterials are distributed to biomedical researchers. For sample authentication and cross-contamination detection, the two fundamental elements of QA, STR genotyping is usually utilized. However, the incorporated number of STR markers is highly redundant for biobanking purposes, resulting in time and cost inefficiency. An index to measure the cross-contamination detection capability of an STR marker, the mixture probability (MP), was developed. MP as well as other forensic parameters for STR markers was validated using STR genotyping data on 2328 normal Koreans with the commercial AmpFlSTR kit. For Koreans, 7 STR marker (D2S1338, FGA, D18S51, D8S1179, D13S317, D21S11, vWA) set was sufficient to provide discrimination power of ${\sim}10^{-10}$ and cross-contamination detection probability of ${sim}1$. Interestingly, similar marker sets were obtained from African Americans, Caucasian Americans, and Hispanic Americans under the same level of discrimination power. Only a small subset of commonly used STR markers is sufficient for QA purposes in biobanks. A procedure for selecting optimal STR markers is outlined using STR genotyping results from normal Korean population.

Backbone NMR assignments of the FAS1-3/FAS1-4 domains of transforming growth factor-beta-induced protein

  • Kang, Dong-Hoon;Yi, Jong-Jae;Sim, Dae-Won;Park, Jung-Wook;Lee, Sung-Hee;Kim, Eun-Hee;Jeon, Young-Ho;Son, Woo Sung;Won, Hyung-Sik;Kim, Ji-Hun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • An extracellular matrix protein, transforming growth factor-beta-induced protein (TGFBIp/βig-h3), which is induced by transforming growth factor-β in the human cornea, skin, and matrix of many connective tissues, is associated with the adhesion, migration, proliferation, and differentiation of various cells. TGFBIp contains four homologous repeat domains, known as FAS1 domains, where certain mutations have been considered to cause corneal dystrophies. In this study, backbone NMR assignments of FAS1-3/FAS1-4 tandem domain were obtained and compared with those previously known for the isolated FAS1-4 domain. The results corroborate in solution the inter-domain interaction between FAS1-3 and FAS1-4 in TGFBIp.

Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics

  • JANG, Tae-Soo;WEISS-SCHNEEWEISS, Hanna
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.4
    • /
    • pp.260-277
    • /
    • 2018
  • The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tetraploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3-44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061-152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chromosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolutionary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies. The present work investigates chromosome numbers (n or 2n), base chromosome numbers (x), ploidy levels, rDNA loci numbers, and genome size data to gain insight into the incidence, evolution and significance of polyploidy in Korean monocots.

Loop-mediated Isothermal Amplification assay for Detection of Candidatus Liberibacter Asiaticus, a Causal Agent of Citrus Huanglongbing

  • Choi, Cheol Woo;Hyun, Jae Wook;Hwang, Rok Yeon;Powell, Charles A
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Huanglongbing (HLB, Citrus greening disease) is one of the most devastating diseases that threaten citrus production worldwide. Although HLB presents systemically, low titer and uneven distribution of these bacteria within infected plants can make reliable detection difficult. It was known loop-mediated isothermal amplification (LAMP) method has the advantages of being highly specific, rapid, efficient, and laborsaving for detection of plant pathogens. We developed a new LAMP method targeting gene contained tandem repeat for more rapid and sensitive detection of Candidatus Liberibacter asiaticus (CLas), putative causal agent of the citrus huanglongbing. This new LAMP method was 10 folds more sensitive than conventional PCR in detecting the HLB pathogen and similar to that of real-time PCR in visual detection assay by adding SYBR Green I to mixture and 1% agarose gel electrophoresis. Positive reactions were achieved in reaction temperature 57, 60 and $62^{\circ}C$ but not $65^{\circ}C$. Although this LAMP method was not more sensitive than real-time PCR, it does not require a thermocycler for amplification or agarose gel electrophoresis for resolution. Thus, we expect that this LAMP method shows strong promise as a reliable, rapid, and cost-effective method of detecting the CLas in citrus and can be applied for rapid diagnosis is needed.

Yeast two-hybrid assay with fluorescence reporter (형광 리포터를 활용한 효모 단백질 잡종 기법 개발)

  • Park, Seong Kyun;Seo, Su Ryeon;Hwang, Byung Joon
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.199-205
    • /
    • 2019
  • Yeast two-hybrid (Y2H) technique has been used to study protein-protein interactions, but its application particularly to a large-scale analysis of protein interaction networks, is limited by the fact that the technique is labor-intensive, based on scoring colonies on plate. Here, we develop a new reporter for the measurement of the protein-protein interactions by flow cytometry. The yeast harboring interacting proteins can also be enriched by fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS). When two interacting proteins are present in the same yeast cell, a reporter protein containing 10 tandem repeats of c-myc epitope becomes localized on the surface of the cell wall, without affecting cell growth. We successful measured the surface display of c-myc epitope upon interacting p53 with SV40 T antigen by flow cytometry. Thus, the newly developed Y2H assay based on the display of c-myc repeat on yeast cell wall could be used to the simultaneous analysis of multiple protein-protein interactions without laborious counting colonies on plate.

Evaluation of recent changes in genetic variability in Thoroughbred horses based on microsatellite markers parentage panel in Korea

  • Park, Chul Song;Lee, Sun Young;Cho, Gil Jae
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.527-532
    • /
    • 2022
  • Objective: In this study, we aimed to investigate the recent changes such as allele frequencies and total probability of exclusion (PE) in Thoroughbred horses in Korea using short tandem repeat (STR) parentage panels between 2006 and 2016. Methods: The genotype was provided for 5,988 horse samples with 15 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3 and VHL20). Results: In our study, the observed number of alleles per locus ranged from 3 (HMS1) to 9 (ASB17) in 2006 and 4 (HMS1) to 9 (ASB2) in 2016, with a mean value of 6.28 and 6.40, respectively. Of the 15 markers, HMS2, HTG4, and CA425 loci had relatively low polymorphism information content (<0.5000) in the Thoroughbred population. Mean levels of genetic variation in 2006 and 2016 were observed heterozygosity (HO) = 0.708, and expected heterozygosity (HE) = 0.685, as well as and HO = 0.699 and HE = 0.682, respectively. The PE was calculated for each group based on the allele frequencies of 14 or 15 STRs. The 2006 survey analyzed that PE was 0.9998, but it increased to 0.9999 in 2016 after the HMS2 marker was added in 2011. The current STR panel is still a powerful tool for parentage verification that contributes to the maintenance of integrity in the Thoroughbred population. Conclusion: The current STR panel is still a powerful tool for parentage verification that contributes to the maintenance of integrity in the Thoroughbred horses. However, continuous monitoring genetic variability is necessary.