• Title/Summary/Keyword: Tandem EGW

Search Result 8, Processing Time 0.017 seconds

Numerical Analysis of Welding Residual Stresses for Ultra-Thick Plate of EH40 Steel Joined by Tandem EGW (극후판 EH40 TMCP강재 Tandem EGW 용접부의 잔류응력 해석)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Kim, Byung-Jong;Yang, Yong-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.821-830
    • /
    • 2010
  • Deck plates and hatch coming of large container carrier and offshore structures are joined by ultra-thick plates whose thickness is more than 60mm. Traditionally FCAW has been used to join the thick plates in butt joint. However, FCAW has been replaced with EGW since the welding efficiency of EGW is higher than that of FCAW. Tandem EGW using two electrodes has been applied to vertical position welding by several shipyards. EGW requires one or two layers of bead whereas FCAW requires more than 20 layers of weld bead in thick welding. However, high welding residual stresses are generated by EGW since it uses higher heat input than FCAW. In the present study, a finite element model is suggested to predict the residual stresses induced by the tandem EGW. Butt specimen of EH40 TMCP shipbuilding steel plates vertical welding was modeled by a three-dimensional model. Residual stresses were measured by X-ray diffraction method and to verify the numerical result. The results show a good agreement with experimental result.

Mechanical Properties and Microstructures of High Heat Input Welded Tandem EGW Joint in EH36-TM Steel (대입열 EH36-TM강의 Tandem EGW 용접부 미세조직 및 기계적 성질)

  • Jeong, Hong-Chul;Park, Young-Hwan;An, Young-Ho;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.57-62
    • /
    • 2007
  • In the coarse grained HAZ of conventional TiN steel, most TiN particles are dissolved and austenite grain growth easily occurrs during high heat input welding. To avoid this difficulty, thermal stability of TiN particles is improved by increasing nitrogen content in EH36-TM steel. Increased thermal stability of TiN particle is helpful for preventing austenite grain growth by the pinning effect. In this study, the mechanical properties and microstructures of high heat input welded Tandem EGW joint in EH36-TM steel with high nitrogen content were investigated. The austenite grain size in simulated HAZ of the steel at $1400^{\circ}C$ was much smaller than that of conventional TiN steel. Even for high heat input welding, the microstructure of coarse grained HAZ consisted of fine ferrite and pearlite and the mechanical properties of the joint were sufficient to meet all the requirements specified in classification rule.

A Study of the Arc Stabilization for Tandem EGW (탄뎀 EGW 기법의 아크 안정화 연구)

  • Hong, Tae-Min;Park, Jong-Min;Kim, Jin-Yong;Huh, Man-Joo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.15-15
    • /
    • 2009
  • 최근 컨테이너선은 점차 대형화되고 있으며, 이에 따라 선체의 외판 상부의 철판 두께도 최대 80mm 까지 설계되고 있다. 블록 외판의 수직 맞대기 용접의 경우 고능률 용접기법인 Electro Gas Weldig(이하 EGW)이 적용되고 있으나, 극 후판의 경우, 기존의 한 개의 전극만으로는 적용 가능한 두께 범위의 한계가 있어 수직 맞대기 용접의 용접생산을 향상시키기 위해 2개의 전극을 사용하는 탄뎀 EGW 기법에 의한 시공법이 고려되었다. 탄뎀 EGW 기법의 시공법에 관한 보고서는 국내외에서 많이 발표되어져 왔다. 하지만 실선 적용에 있어 두께 80mm, 길이 2M 이상의 철판을 안정적으로 용접하기 위한 장애요소는 용접 중 적절한 슬래그의 배출 조절이다. 두개의 용접 와이어를 동시에 공급할 때 발생하는 슬래그를 균형있게 배출하지 못하는 경우 용융, 금속 상부에 적층되는 슬래그의 양이 증가하게 되고, 아크는 불안해져서 전극팁에의 슬래그 부착, 전극 팁의 발열 등에 의한 요인들이 송급을 불안하게 하여 연속 용접이 어려워진다. 본 연구에서는 탄뎀 EGW 기법을 실제로 현업에 적용하기 위해서는 안정적인 슬래그 배출에 착안하여 동당금의 형상에 따라 슬래그의 배출 성능을 확인하고 형상별 전류, 전압 파형을 측정하고, 파형 결과에 따라 아크 안정성을 평가함으로서 탄뎀 EGW 용접기법에 적정한 동당금을 설계한 결과를 소개하고자 하였다.

  • PDF

Impact Toughness and Microstructure of the Weld Metal by Tandem Electro-Gas Welded EH40 Steel (EH40 강의 Tandem EGW 용접부 미세조직과 충격인성 특성)

  • Park, Tae Gyu;Kim, Jeon Min;Yoon, Hye Young;Lee, Je Hyun;Chung, Won Jee;Kim, Ho Kyeong
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1021-1027
    • /
    • 2010
  • The charpy impact property was lower at the surface and middle regions than that at the root region in metal welded by Tandem EGW of 82 mm thick EH40-TM steel plates. Temperature distribution in the weld sample and the heating/cooling temperature throughout the various regions in the weld metal were estimated by the commercial weld simulation program SYSWELD. The microstructure of the weld metal consisted of acicular ferrite and grain boundary ferrite. Grain boundary ferrite in the acicular ferrite matrix was found more in the surface and middle regions than in the root region, and the acicular ferrite was also coarser in the surface and middle regions where the impact toughness was lower and the input temperature was higher. Our results indicated that the impact toughness property was related to the microstructure morphology, the distribution of grain boundary ferrite, and the acicular ferrite.

The Study about Characteristics of Welding Consumable and Weld Metal for EGW (EGW 용접재료 및 용접부 특성에 관한 연구)

  • Lee, Jeong-Soo;Yun, Jin-Oh;Jeong, Sang-Hoon;Park, Chul-Gyu;An, Young-Ho
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.79-83
    • /
    • 2010
  • In this study, newly developed welding consumables for EGW were welded in EH 36 TM steel plates and their welded joints were evaluated in point of mechanical properties and microstructures compared with imported consumables. Newly developed welding consumables were evaluated as good arc stability and slag fluidity, substantially the same with imported products. The tensile strength of all welded joints were sufficient to meet the requirements specified in a ship’s classification(490~640MPa) and all areas of fracture were heat affected zone(HAZ). Charpy absorbed energy values of all EG welded metals were sufficient to meet the requirements of classification(min. 34J) and those of newly developed wires were evaluated to be better than those of imported wires. As a result observing microstructures of single and tandem EG welded metals through optical and scanning electron microscope (OM&SEM), no grain boundary ferrite(PF(G)) were created in a prior austenite grain boundary and a volume fraction of a fine acicular ferrite were observed very high.

Application of high heat input(wider bead width) for hull structural welding with semi-automatic FCAW (선체 반자동 FCAW 적용 시, 대입열(비드폭 확대) 용접 적용)

  • Nam, Seong-Gil;Jang, Tae-Won;Yun, Dong-Ryeol;Han, Jeong-Seok
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.142-143
    • /
    • 2006
  • The use of hull structural steel with heavy thickness has been enlarging due to the increase of ship volume. High heat input welding methods like EGW, FGB and SAW tandem are applied in field of ship-building. However the application of high heat input methods is clearly limited because welding method to be most widely used is semi-automatic FCAW but heat input for FCAW is limited in order to obtain impact property at low temperature. This paper will introduce the application of 30mm bead width of FCW with Ni free & low Ni content.

  • PDF