• Title/Summary/Keyword: Tall building structures

Search Result 343, Processing Time 0.019 seconds

Predicting of tall building response to non-stationary winds using multiple wind speed samples

  • Huang, Guoqing;Chen, Xinzhong;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.227-244
    • /
    • 2013
  • Non-stationary extreme winds such as thunderstorm downbursts are responsible for many structural damages. This research presents a time domain approach for estimating along-wind load effects on tall buildings using multiple wind speed time history samples, which are simulated from evolutionary power spectra density (EPSD) functions of non-stationary wind fluctuations using the method developed by the authors' earlier research. The influence of transient wind loads on various responses including time-varying mean, root-mean-square value and peak factor is also studied. Furthermore, a simplified model is proposed to describe the non-stationary wind fluctuation as a uniformly modulated process with a modulation function following the time-varying mean. Finally, the probabilistic extreme response and peak factor are quantified based on the up-crossing theory of non-stationary process. As compared to the time domain response analysis using limited samples of wind record, usually one sample, the analysis using multiple samples presented in this study will provide more statistical information of responses. The time domain simulation also facilitates consideration of nonlinearities of structural and wind load characteristics over previous frequency domain analysis.

Effects of viscoelastic memory on the buffeting response of tall buildings

  • Palmeri, A.;Ricciardelli, F.;Muscolino, G.;De Luca, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.89-106
    • /
    • 2004
  • The response of tall buildings to gust buffeting is usually evaluated assuming that the structural damping is of a viscous nature. In addition, when dampers are incorporated in the design to mitigate the response, their effect is allowed for increasing the building modal damping ratios by a quantity corresponding to the additional energy dissipation arising from the presence of the devices. Even though straightforward, this procedure has some degree of inaccuracy due to the existence of a memory effect, associated with the damping mechanism, which is neglected by a viscous model. In this paper a more realistic viscoelastic model is used to evaluate the response to gust buffeting of tall buildings provided with energy dissipation devices. Both cases of viscous and hysteretic inherent damping are considered, while for the dampers a generic viscoelastic behaviour is assumed. The Laguerre Polynomial Approximation is used to write the equations of motion and find the frequency response functions. The procedure is applied to a 25-story building to quantify the memory effects, and the inaccuracy arising when the latter is neglected.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

Downburst versus boundary layer induced wind loads for tall buildings

  • Kim, Jongdae;Hangan, Horia;Eric Ho, T.C.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.481-494
    • /
    • 2007
  • Downbursts are transient phenomena that produce wind profiles that are distinctly different from synoptic boundary layers. Wind field data from Computational Fluid Dynamics (CFD) simulations of isolated downburst-like impinging jets, are used to investigate structural loads of tall buildings due to these high intensity winds. The base shear forces and base moments of tall buildings of heights between 120 and 250 m produced by downburst winds of various scales are compared with the forces from the equivalent boundary layer gust winds, with matched 10-metre wind velocity. The wind profiles are mainly functions of the size of the downburst and the radial distance from the centre of the storm. Wind forces due to various downburst profiles are investigated by placing the building at different locations relative to the storm center as well as varying the size of the downburst. Overall it is found that downbursts larger than approx. 2,000 m in diameter might produce governing design wind loads above those from corresponding boundary layer winds for tall buildings.

Empirical formulations for evaluation of across-wind dynamic loads on rectangular tall buildings

  • Ha, Young-Cheol
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.603-616
    • /
    • 2013
  • This study is aimed at formulating an empirical equation for the across-wind fluctuating moment and spectral density coefficient, which are needed to estimate the across-wind dynamic responses of tall buildings, as a function of the side ratios of buildings. In order to estimate an empirical formula, wind tunnel tests were conducted on aero-elastic models of the rectangular prisms with various aspect and side ratios in turbulent boundary layer flows. In this paper, criteria for the across-wind fluctuating moment and spectral density are briefly discussed and the results are analyzed mainly as a function of the side ratios of the buildings. Finally, empirical formulas for the across-wind fluctuating moment coefficient and spectral density coefficient according to variation of the aspect ratio are proposed.

International high-frequency base balance benchmark study

  • Holmes, John D.;Tse, Tim K.T.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.457-471
    • /
    • 2014
  • A summary of the main results from an international comparative study for the high-frequency base balance is given. Two buildings were specified - a 'basic' and an 'advanced' building. The latter had more complex dynamic response with coupled modes of vibration. The predicted base moments generally showed good agreement amongst the participating groups, but less good agreement was found for the roof accelerations which are dominated by the resonant response, and subject to measurement errors for the generalized force spectra, to varying mode shape correction techniques, and different methods used for combining acceleration components.

Minimization of wind load on setback tall building using multiobjective optimization procedure

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.157-175
    • /
    • 2022
  • This paper highlights the minimization of drag and lift coefficient of different types both side setback tall buildings by the multi-objective optimization technique. The present study employed 48 number both-side setback models for simulation purposes. This study adopted three variables to find the two objective functions. Setback height and setback distances from the top of building models are considered variables. The setback distances are considered between 10-40% and setback heights are within 6-72% from the top of the models. Another variable is wind angles, which are considered from 0° to 90° at 15° intervals according to the symmetry of the building models. Drag and lift coefficients according to the different wind angles are employed as the objective functions. Therefore 336 number population data are used for each objective function. Optimum models are compared with computational simulation and found good agreements of drag and lift coefficient. The design wind angle variation of the optimum models is considered for drag and lift study on the main square model. The drag and lift data of the square model are compared with the optimum models and found the optimized models are minimizing the 45-65% drag and 25-60% lift compared to the initial square model.

Axial compressive strength of short steel and composite columns fabricated with high stength steel plate

  • Uy, B.
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.171-185
    • /
    • 2001
  • The design of tall buildings has recently provided many challenges to structural engineers. One such challenge is to minimise the cross-sectional dimensions of columns to ensure greater floor space in a building is attainable. This has both an economic and aesthetics benefit in buildings, which require structural engineering solutions. The use of high strength steel in tall buildings has the ability to achieve these benefits as the material provides a higher strength to cross-section ratio. However as the strength of the steel is increased the buckling characteristics become more dominant with slenderness limits for both local and global buckling becoming more significant. To arrest the problems associated with buckling of high strength steel, concrete filling and encasement can be utilised as it has the affect of changing the buckling mode, which increases the strength and stiffness of the member. This paper describes an experimental program undertaken for both encased and concrete filled composite columns, which were designed to be stocky in nature and thus fail by strength alone. The columns were designed to consider the strength in axial compression and were fabricated from high strength steel plate. In addition to the encased and concrete filled columns, unencased columns and hollow columns were also fabricated and tested to act as calibration specimens. A model for the axial strength was suggested and this is shown to compare well with the test results. Finally aspects of further research are addressed in this paper which include considering the effects of slender columns which may fail by global instabilities.

Evaluating the Wind-induced Response of Tall Building Changed by Arrangements of the Buildings (건물배치변화에 따른 고층건축물의 풍응답 평가)

  • Cho, Sang Kyu;Ha, Young Cheol;Kim, Jong Rak;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.305-314
    • /
    • 2004
  • Many residential buildings and mixed-use (i.e., residential and commercial) buildings that are currently under construction in the country mainly consist of building clusters rather than single structures. Recent trends show single buildings that actually consist of two houses. The lower part of the building consists of a single dwelling space. However, the upper part of the building is split into two dwellings, considering the aspects of commercialism and appearance, such as ventilation and lighting. These tall and complex buildings not only have low mass and damping. They also depend on wind loads for their structural stability and serviceability, due to the interaction between the building groups and the wind. In architectural design, however, the interaction effects among neighboring houses within a building group have yet to be identified. In addition, it is difficult to predict these interaction effects. In this regard, this thesis aims to model patterns of architecture, which consist of two houses that are existing or under construction. Current structures are investigated by comparing their wind-reduced response interaction effects, based on the measured distance between two buildings, and the acceleration response through the wind tunnel test. The results of this study are expected to provide basic data for wind-induced response interaction effects of building groups. Furthermore, the outcomes are also intended to be used as data for more rational and economical structure design.

Stability of Diagrid Structures

  • Rahimian, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.263-270
    • /
    • 2016
  • In this paper, the stability requirements for diagrid and mega braced structures are examined. The role of the secondary bracing system for the stability of a diagrid structure is discussed. A simple procedure is proposed for the design of the secondary bracing system when it is required. As a case study, the design of the Hearst Tower diagrid and its secondary bracing system are presented.