• Title/Summary/Keyword: Tall building behavior

Search Result 90, Processing Time 0.019 seconds

Simplified Analysis of Three Dimensional Mega Foundations for High-Rise Buildings

  • Jeong, Sangseom;Lee, Jaehwan;Cho, Jaeyeon
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • In this study, an approximate computer-based method was developed to analyze the behavior of raft and piled raft foundations. Special attention is given to the improved analytical method proposed by considering raft flexibility and soil nonlinearity. The overall objective of this study is to focus on the application of a simplified analysis method for predicting the behavior of sub-structures. Through the comparative studies, it is found that the computer programs (YS-MAT and YSPR), developed in this study, is in agreement with the general trends observed by field measurements. Therefore, YS-MAT (Yonsei-Mat) and YSPR (Yonsei Piled Raft) can be effectively used for the preliminary design of a raft or a piled raft foundation for high-rise buildings.

Application of Steel-tubed Concrete Structures in High-rise Buildings

  • Zhou, Xuhong;Liu, Jiepeng
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.161-167
    • /
    • 2019
  • Making full use of material strength, maintaining sufficient ductility of structural components, and ensuring simple and robust connections are crucial to the development of steel-concrete composite structures. The steel-tubed concrete structure uses thin-walled steel tube to provide confinement, so that the strength and ductility of the concrete core are improved. Meanwhile, the thin-walled steel tube is terminated at the beam-column joint to avoid the local buckling problem and simplify the connections between steel tube and RC members. A brief overview of the development of steel-tubed concrete structures is presented. Through the discussion on the structural behavior of steel-tubed concrete and the introduction of typical practical projects, the prospects for future research are highlighted.

Implementation of Occupant Density and Walking Pattern Measurement for Emergency Evacuation and Safety in High-Rise Multi-Purpose Facilities

  • Lee, Myung Sik
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.409-415
    • /
    • 2018
  • Recently, many countries around the world began to show interest in safety against terrorism, fire, and natural disasters. This study aimed to propose a quantitative measurement system for emergency evacuation and safety for various kinds of terrorism and fire within high-rise multi-purpose facilities, which can measure the pedestrians' ordinary walking patterns in the concourse with the highest pedestrian volume out of all the spaces within multi-story buildings, predict pedestrians' evacuation walking lines when a sudden disaster breaks out, and analyze the gait coefficient, occupant density, and evacuation behavior time.

Behavior of steel-concrete composite beam using angle shear connectors at fire condition

  • Davoodnabi, Seyed Mehdi;Mirhosseini, Seyed Mohammad;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.141-147
    • /
    • 2019
  • Fire is one of the environmental parameters affecting the structure causing element internal forces to change, as well as reducing the strength of the materials. One of the common types of floors in tall steel structures is the steel concrete composite slab. Shear connectors are used in steel and concrete composite beam in various shapes also has played significant role in a burning fire event of building with a steel concrete composite beam. The current study has reviewed the effects of temperature raising on the angle connector behavior through the use of push out tests and monotonic static force. The results have shown (1) the ductility of the samples is acceptable based on EC4 standard; (2) temperature raising has reduced the stiffness; (3) the shear ductility increment; and (4) the shear capacity reduction. Also, the amount of angle shear connector resistance has been decreased from 18.5% to 41% at ambient temperature up to $850^{\circ}C$.

Reconfiguration of Korea Highrise Residential Spaces in Response to Pandemic

  • Myung Sik Lee;Seung Jo Lee
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.351-362
    • /
    • 2023
  • In modern society, rapid environmental changes are occurring due to the complex interaction of various factors. Starting in 2020, the social environment is changing rapidly due to the impact of the pandemic, and the social and economic living environment is changing significantly not only in Korea but also internationally. In this trend, behavioral and spatial changes are occurring in response to changes in the architectural living environment. To analyze changes in behavior and space from an architectural perspective in response to changes in the social environment, first organize the concept and aspects of the pandemic that caused the change, examine the theory of the pandemic, and examine architectural responses to changes in the social environment. There is a need to analyze. Therefore, in order to architecturally review changes in the social environment due to the pandemic, the purpose of this study is to analyze the living behavior and space of major highrise residential complexes in the living environment and present new spatial alternatives in response.

Analysis of Lateral Behavior in Core and Offset Outrigger System (코어 및 오프셋 아웃리거 구조시스템의 수평거동에 대한 분석)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • The research intended to understand the lateral behavior in core and offset outrigger system. To achieve this goal, a structural analysis and design of 70 stories building was carried out by making use of MIDAS-Gen. And the primary parameters of this analysis were the stiffness of outrigger and the location of outrigger in plan. On the basis of the analysis results, we analyzed the lateral behavior of structural elements such as slab, outrigger and exterior columns in core and offset outrigger. In this analysis research, it is indicated that the stiffness of outrigger and the outrigger location in plan had an any impact on lateral behavior in outrigger system of tall building. Specially, slab stresses in core outrigger system were highly distributed in the slab near the outrigger system to connect shear walls and exterior columns while slab stresses in offset outrigger system were highly distributed in the slab between the outrigger system and shear walls. Also the study results can be of significant help to obtaining the engineering data for the reasonable structure design of the high-rise outrigger system.

Shear behavior of RC interior joints with beams of different depths under cyclic loading

  • Xi, Kailin;Xing, Guohua;Wu, Tao;Liu, Boquan
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • Extensive reinforced concrete interior beam-column joints with beams of different depths have been used in large industrial buildings and tall building structures under the demand of craft or function. The seismic behavior of the joint, particularly the relationship between deformation and strength in the core region of these eccentric reinforced concrete beam-column joints, has rarely been investigated. This paper performed a theoretical study on the effects of geometric features on the shear strength of the reinforced concrete interior beam-column joints with beams of different depths, which was critical factor in seismic behavior. A new model was developed to analyze the relationship between the shear strength and deformation based on the Equivalent Strut Mechanism (ESM), which combined the truss model and the diagonal strut model. Additionally, this paper developed a simplified calculation method to estimate the shear strength of these type eccentric joints. The accuracy of the model was verified as the modifying analysis data fitted to the test results, which was a loading test of 6 eccentric joints conducted previously.

Development of Efficient Analytical Model for a Diagrid Mega-Frame Super Tall Building (다이어그리드 메가프레임 초고층 건물을 위한 효율적인 해석모델의 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.95-103
    • /
    • 2011
  • Among structural systems for complex-shaped tall buildings, diagrid system is widely used because of its structural efficiency and beauty of form. Recently, mega frame is favorably employed as a suitable structural system for skyscrapers because this structural system has sufficient stiffness against the lateral forces by combination of mega members which consist of many columns and girders. Diagrid mega frame system is expected to be promising structural system for future super tall buildings. However, it takes tremendous analysis times and engineer's efforts to predict the structural behavior of tall buildings applied with diagrid mega frame system because the diagrid mega frame structure has significant numbers of elements and nodes. Therefore, efficient analytical method for all buildings applied with diagrid mega frame system has been proposed in this study to reduce the efforts and time required for the analysis and design of diagrid mega frame structure. To this end, an efficient modelling technique using the characteristics of diagrid mega frame structures and an efficient analytical model using minimal DOFs by the matrix condensation method were proposed in this study. Based on the analysis of an example structure, the effectiveness and accuracy of the proposed method have been verified by the comparison between the results of the proposed method and the conventional method.

Shaking table test of wooden building models for structural identification

  • Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this paper, it is aimed to present a comparative study about the structural behavior of tall buildings consisting of different type of materials such as concrete, steel or timber using finite element analyses and experimental measurements on shaking table. For this purpose, two 1/60 scaled 28 and 30-stories wooden building models with $40{\times}40cm$ and $35{\times}35cm$ ground/floor area and 1.45 m-1.55 m total height are built in laboratory condition. Considering the frequency range, mode shapes, maximum displacements and relative story drifts for structural models as well as acceleration, displacement and weight limits for shaking table, to obtain the typical building response as soon as possible, balsa is selected as a material property, and additional masses are bonded to some floors. Finite element models of the building models are constituted in SAP2000 program. According to the main purposes of earthquake resistant design, three different earthquake records are used to simulate the weak, medium and strong ground motions. The displacement and acceleration time-histories are obtained for all earthquake records at the top of building models. To validate the numerical results, shaking table tests are performed. The selected earthquake records are applied to first mode (lateral) direction, and the responses are recorded by sensitive accelerometers. Comparisons between the numerical and experimental results show that shaking table tests are enough to identify the structural response of wooden buildings. Considering 20%, 10% and 5% damping rations, differences are obtained within the range 4.03-26.16%, 3.91-65.51% and 6.31-66.49% for acceleration, velocity and displacements in Model-1, respectively. Also, these differences are obtained as 0.49-31.15%, 6.03-6.66% and 16.97-66.41% for Model-2, respectively. It is thought that these differences are caused by anisotropic structural characteristic of the material due to changes in directions parallel and perpendicular to fibers, and should be minimized using the model updating procedure.

Vibration Control of Wind Response of Tall Building Using TLD and MTLD (TLD와 MTLD을 이용한 고층건물의 풍응답 진동제어)

  • You, Ki-Pyo;Ko, Nag-Ho;Kim, Young-Moon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.73-80
    • /
    • 2005
  • Serviceability of buildings is affect by excessive acceleration experienced at the top floors in wind storms that may cause discomfort to the occupants. Tuned liquid damper(TLD) and multiple tuned liquid damper(MTLD) are passive control devices that consists of rigid tank filled with liquid to suppress the vibration of structures. This TLD and MTLD are attributable to several potential advantages - low costs; easy to install in existing structures; effective even for small-amplitude vibrations. In this paper, the behavior of TLD and MTLD are investigated analytically and wind tunnel test of high-frequency force balance.

  • PDF