• 제목/요약/키워드: Tall Office Building

검색결과 55건 처리시간 0.02초

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • 국제초고층학회논문집
    • /
    • 제6권2호
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.

Preliminary Design of Structural Health Monitoring for High-Rise Buildings

  • Ryu, Hyun-hee;Kim, Jong-soo;Choi, Eun-gyu;Lee, Sang-hoon
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.279-284
    • /
    • 2017
  • The purpose of structural health monitoring is to evaluate structural behavior due to various external loads through installation of appropriate measurement. Accordingly, a guideline for monitoring standards is necessary to evaluate the safety and performance of a structure. This paper introduces preliminary design of SHM for high-rise buildings, which is the stage creating a guideline. As for preliminary design of SHM, first step is to calculate the displacement and member force through structural analysis. After that, limitations or qualifications are proposed for management. Secondly, based on the results from first step, issues related monitoring such as monitoring method, measurement type, or installation location are determined. This method leads building managers to reasonably define the structural safety over the whole life cycle. Furthermore, this experience contributes to development of SHM forward and it is expected to be useful for other types of structures as well such as spatial structures or irregular buildings.

Structural Design and Construction for Tall Damped Building with Irregularly-Shaped Plan and Elevation

  • Yamashita, Yasuhiko;Kushima, Soichiro;Okuno, Yuuichirou;Morishita, Taisei
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.255-264
    • /
    • 2018
  • This paper introduces three distinctive means for the use of a 189-meter high damped structure ensuring safety against earthquake: 1. Realization of L-shaped elevational structural planning: The bottom and top of the tower have belt trusses and hat trusses respectively to restrain the bending deformation. Furthermore, large-capacity oil dampers (damping force 6,000 kN) are installed in the middle part of the tower to restrain the higher-mode deformation. 2. Realization of L-shaped planar structural planning: We devised a means of matching the centers of gravity and rigidity by adjusting planar rigidity. Moreover, viscous damping devices are located at the edges of the L-shaped plan, where torsional deformation tends to be amplified. We call this the "Damping Tail" system. 3. Composite foundation to equalize deformations under different loading conditions: We studied the vertical and horizontal deformations using sway-rocking and 3D FEM models including the ground, and applied multi-stage diameter-enlarged piles to the tower and a mat foundation to the podium to keep the foundations from torsional deformations and ensure structural safety.

Structural Design of High-Rise Concrete Condominium with Wall Dampers for Vibration Control

  • Tsushi, Takumi;Ogura, Fumitaka;Uekusa, Masahiro;Kake, Satoshi;Tsuchihashi, Toru;Yasuda, Masaharu;Furuta, Takuya
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.201-209
    • /
    • 2019
  • This paper presents a structural design of the "(Tentative Name) Toranomon Hills Residential Tower" which is currently under construction in Tokyo. The building is a reinforced concrete high-rise residential complex building with 54 stories above ground, 4 basement levels, and a building height of about 220 m. It is a requirement to provide the highest grade of residence in Japan, and in terms of the structural design, it is required to provide wide and comfortable spaces with high seismic performance. These requirements are satisfied by providing a total of 774 vibration control walls of two types. Also, to further improve the structural performance, steel fibers at the rate of 1.0vol% are provided in the ultra-high strength concrete used in the column members.

The Spiral - 66 Hudson Blvd Supertall

  • Smilow, Jeffery;Chan, Patrick
    • 국제초고층학회논문집
    • /
    • 제11권1호
    • /
    • pp.41-50
    • /
    • 2022
  • The Spiral, a supertall tower at the Hudson Yards Zoning District of NYC is an new iconic commercial office tower. The spiraling terraces throughout the height of the building creates unique outdoor spaces at each level for its occupants while introduces structural challenges unlike common office towers. Innovative structural solutions and an integrated connection design and steel detailing delivery process proved to be a key factor in the success of the project.

The Preliminary Research on the Relationship between Carbon Emissions and Typical Floor Design of High-Rise Office Buildings in Shanghai

  • Zhixin, Dong;Yi, Chen
    • 국제초고층학회논문집
    • /
    • 제7권2호
    • /
    • pp.153-159
    • /
    • 2018
  • The greenhouse effect caused by human activities is becoming increasingly serious. The building industry, which is directly related with carbon emissions, has the responsibility and potentiality to reduce carbon emissions. Recently, Chinese and foreign academics have achieved some research results with respect to building carbon emissions. This paper tries to examine these issues in the context of climate conditions in the Shanghai area. Based on the typical floor plans of high-rise office buildings, analysis was performed via software simulation and data analysis; the paper explores the relationship between different design methods of typical floor plans and carbon emissions. The objective is to deliver results beneficial to typical floor-design methods with respect to the reduction of carbon emissions, so as to provide a reference for architects.

Research on the Effect of High-Rise Commercial Building Construction on Land Value of Shanghai in the 1920s

  • Sun, Le
    • 국제초고층학회논문집
    • /
    • 제5권2호
    • /
    • pp.145-154
    • /
    • 2016
  • When the tall office building first appeared in the street of Chicago in the end of Nineteenth Century, this building type has become a commodity in the development of real estate and been defined as a machine that makes the land pay. With the investigation of land price samples of the high-rise commercial buildings and the overall land price development in the central district of International Settlement in Shanghai, this paper tries to examine the site selection and construction of high-rise commercial buildings have important positive effect on the land value development.

Developments of Structural Systems Toward Mile-High Towers

  • Moon, Kyoung Sun
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.197-214
    • /
    • 2018
  • Tall buildings which began from about 40 m tall office towers in the late $19^{th}$ century have evolved into mixed-use megatall towers over 800 m. It is expected that even mile-high towers will soon no longer be a dream. Structural systems have always been one of the most fundamental technologies for the dramatic developments of tall buildings. This paper presents structural systems employed for the world's tallest buildings of different periods since the emergence of supertall buildings in the early 1930s. Further, structural systems used for today's extremely tall buildings over 500 m, such as core-outrigger, braced mega-tube, mixed, and buttressed core systems, are reviewed and their performances are studied. Finally, this paper investigates the potential of superframed conjoined towers as a viable structural and architectural solution for mile-high and even taller towers in the future.

Performance-based Design of 300 m Vertical City "ABENO HARUKAS"

  • Hirakawa, Kiyoaki;Saburi, Kazuhiro;Kushima, Souichirou;Kojima, Kazutaka
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.35-48
    • /
    • 2014
  • In designing a 300 meter high skyscraper expected to be the tallest building in Japan, an earthquake-ridden country, we launched on the full-scale performance based design to ensure redundancy and establish new specifications using below new techniques. The following new techniques are applied because the existing techniques/materials are not enough to meet the established design criteria for the large-scale, irregularly-shaped building, and earth-conscious material saving and construction streamlining for reconstructing a station building are also required: ${\bullet}$ High strength materials: Concrete filled steel tube ("CFT") columns made of high-strength concrete and steels; ${\bullet}$ New joint system: Combination of outer diaphragm and aluminium spray jointing; ${\bullet}$ Various dampers including corrugated steel-plate walls, rotational friction dampers, oil dampers, and inverted-pendulum adaptive tuned mass damper (ATMD): Installed as appropriate; and ${\bullet}$ Foundation system: Piled raft foundation, soil cement earth-retaining wall construction, and beer bottle shaped high-strength CFT piles.

Comprehensive Field Measurement of Indoor Air and Thermal Quality in Naturally Ventilated Office Building with Double-Skin Façade

  • Ito, Kazuhide;Shiraishi, Yasuyuki
    • 국제초고층학회논문집
    • /
    • 제2권4호
    • /
    • pp.293-314
    • /
    • 2013
  • Double-Skin Façade (DSF), which is a kind of passive indoor environmental control technique, is effective way to control environmental loads while maintaining the transparency especially in perimeter zone and hence the adoption example of DSF keep increasing recently. The objective of this study was to perform a field survey of air quality environment with natural ventilation through DSF and thermal environment within office building with six stories during a mild climate period in Japan. Moreover, to understand the comprehensive environmental performance of the target building, questionnaire survey was conducted to subjectively evaluate the productivity and satisfaction with the environmental factors in office space. In this field measurement, there was a positive correlation between the DSF internal ventilation flow and the amount of solar radiation on the DSF normal surface; the primary driving force for ventilation in the DSF was considered to be the buoyancy force caused by solar radiation. The results of questionnaire survey with regard to productivity level indicated the need for improvement in the thermal (temperature) and spatial environment (room size and furniture placement).