• 제목/요약/키워드: Tall Buildings

검색결과 889건 처리시간 0.019초

Design of tall residential buildings in Singapore for wind effects

  • Balendra, T.;Ma, Z.;Tan, C.L.
    • Wind and Structures
    • /
    • 제6권3호
    • /
    • pp.221-248
    • /
    • 2003
  • The design of high-rise building is often influenced by wind-induced motions such as accelerations and lateral deflections. Consequently, the building's structural stiffness and dynamic (vibration periods and damping) properties become important parameters in the determination of such motions. The approximate methods and empirical expressions used to quantify these parameters at the design phase tend to yield values significantly different from each other. In view of this, there is a need to examine how actual buildings in the field respond to dynamic wind loading in order to ascertain a more realistic model for the dynamic behavior of buildings. This paper describes the findings from full-scale measurements of the wind-induced response of typical high-rise buildings in Singapore, and recommends an empirical forecast model for periods of vibration of typical buildings in Singapore, an appropriate computer model for determining the periods of vibration, and appropriate expressions which relate the wind speed to accelerations in buildings based on wind tunnel force balance model test and field results.

초고밀도 고층복합빌딩시스템의 최적설계 (Optimum Design For a Highly Integrated Tall Building System)

  • 조태준;김태수
    • 복합신소재구조학회 논문집
    • /
    • 제6권1호
    • /
    • pp.14-20
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, as the alternative design for highly integrated city area. Considering a tri-axial symmetric conditions and boundary conditions for the three-dimensional building structure system, a two-dimensional model is composed. In the proposed indeterminate structural model, important design variables are determined for obtaining minimum horizontal deflections, reactions and bending moments at the ground level of the buildings. Regarding a case of the provided two spatial structures connected to 4 buildings, the optimum location of middle located spatial structure is 45% from the top of the building, which minimize the end moments at the bottom of the buildings. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the system due to the added internal truss-dome structures in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

개방형BIM환경에서의 룰기반 초고층건축물 피난법규 검토모듈 개발 (Development of Rule-based Checking Modules for the Evacuation Regulations of Super-tall Buildings in Open BIM Environments)

  • 김인한;최중식;조근하
    • 한국CDE학회논문집
    • /
    • 제18권2호
    • /
    • pp.83-92
    • /
    • 2013
  • IFC based open BIM has internationally developed as a solution for interoperability problem among different software applications. Despite much interest and effort, the open BIM technologies are rarely introduced to the construction industry and need more technical development for a practical application as well. This research aims to develop automated code checking modules for quality assurance process of BIM data. The research have analyzed domestic regulations focusing on super-tall buildings and developed open BIM-based code checking modules for the evacuation regulations. The modules are able to validate evacuation regulations such as installation of emergency elevator and fire safety zone. The authors expect to improve the process of BIM quality assurance and enhance the quality of BIM data by this research on automated checking system.

Reliability of numerical computation of pedestrian-level wind environment around a row of tall buildings

  • Lam, K.M.;To, A.P.
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.473-492
    • /
    • 2006
  • This paper presents numerical results of pedestrian-level wind environment around the base of a row of tall buildings by CFD. Four configurations of building arrangement are computed including a single square tall building. Computed results of pedestrian-level wind flow patterns and wind speeds are compared to previous wind tunnel measurement data to enable an assessment of CFD predictions. The CFD model uses the finite-volume method with RNG $k-{\varepsilon}$ model for turbulence closure. It is found that the numerical results can reproduce key features of pedestrian-level wind environment such as corner streams around corners of upwind building, sheltered zones behind buildings and channeled high-speed flow through a building gap. However, there are some differences between CFD results and wind tunnel data in the wind speed distribution and locations of highest wind speeds inside the corner streams. In locations of high ground-level wind speeds, CFD values match wind tunnel data within ${\pm}10%$.

고층건축물의 비틀림방향 변동풍력의 특성에 관한 실험적 연구 (Wind tunnel test study on verifying the characteristics of torsional fluctuating wind force of rectangular tall buildings)

  • 하영철;김동우;길용식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims at verifying characteristics of torsional fluctuating moment coefficient and power spectral density, which is needed to estimate torsional response of tall buildings. In order to estimate characteristics, the wind tunnel tests have been conducted on 52 types aero-elastic model of the rectangular prisms with various aspects ratios, side ratios and surface roughness in turbulent boundary layer flows. In this paper, characteristics of torsional fluctuating wind force are briefly discussed and then these results were mainly analyzed as a function of the aspects ratios and side ratios of buildings.

  • PDF

Review of Buckling-Restrained Brace Design and Application to Tall Buildings

  • Takeuchi, Toru;Wada, Akira
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.187-195
    • /
    • 2018
  • Buckling-restrained braces (BRBs) are widely used as highly ductile seismic devices, with the first building using BRBs completed in 1989 in Tokyo, and thousands more now in Japan, USA, Taiwan, China, New Zealand and other countries. Although design codes of several countries specify BRB performance criteria, detailed design provisions are not necessarily provided, as BRBs are typically treated as a manufactured device. This paper briefly reviews the early history of BRB research and offers state-of-the-art views on the design criteria required to obtain stable and reliable performance. Representative project examples and up-to-date studies relevant to tall buildings are summarized.

Exploratory study on wind-adaptable design for super-tall buildings

  • Xie, Jiming;Yang, Xiao-yue
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.489-497
    • /
    • 2019
  • Wind-adaptable design (WAD) provides a new method for super-tall buildings to lessen design conflicts between architectural prerequisites and aerodynamic requirements, and to increase the efficiency of structural system. Compared to conventional wind-resistant design approach, the proposed new method is to design a building in two consecutive stages: a stage in normal winds and a stage during extreme winds. In majority of time, the required structural capacity is primarily for normal wind effects. During extreme wind storms, the building's capacity to wind loads is reinforced by on-demand operable flow control measures/devices to effectively reduce the loads. A general procedure for using WAD is provided, followed by an exploratory case study to demonstrate the application of WAD.

A Structural Engineer's Approach to Differential Vertical Shortening in Tall Buildings

  • Matar, Sami S.;Faschan, William J.
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.73-82
    • /
    • 2017
  • Vertical shortening in tall buildings would be of little concern if all vertical elements shortened evenly. However, vertical elements such as walls and columns may shorten different amounts due to different service axial stress levels. With height, the differential shortening may become significant and impact the strength design and serviceability of the building. Sometimes column transfers or other vertical structural irregularities may cause differential shortening. If differential shortening is not addressed properly, it can impact the serviceability of the building. This paper takes the perspective of a structural engineer in planning the design, predicting the shortening and its effects, and communicating the information to the contractor.

초고층 건축물의 수평진동에 대한 인지도 평가 (Perception Threshold for Horizontal Vibration of Tall Buildings)

  • 조강표;정승환;조수연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.751-756
    • /
    • 2007
  • In this paper, perception threshold for horizontal vibration of tall buildings was investigated. After a comparative study of human comfort criteria for wind-induced vibration in foreign countries being made, perception threshold was recorded by increasing acceleration in the range of 0.2Hz through 1.2Hz of frequency in horizontal vibration experiments, and perception of subjects was examined by a proper questionnaire. Also, the results obtained from experiments of horizontal vibration were compared with Japanese standard(AIJES-A001-2004).

  • PDF

초고층건물 초기 구조시스템 선정을 위한 강성증가요인 효과 분석 (Analysis of Effects of Stiffness Increment Factors for Deciding the Initial Structural System of Tall Buildings)

  • 이재철;정종현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.857-862
    • /
    • 2007
  • The purpose of this research is to compare the stiffness increment effects with the floor plan shapes by the stiffness increment factors. For this, we generated the standard floor plans with Box and T type shapes. Then applied the stiffness increment factors -outrigger, material strength, member section- to those floor plans, and generated several alternative analysis models that make the effects of the factors to the lateral displacement exposed. Finally, we analyzed the stiffness increment effects and compared with each other by the stiffness increment factors. As a result, we found that the increment effects have not influence to floor plan shapes, and orders of stiffness increment effects are outrigger, core wall and material strength. We expect that the results of this study could be effectively utilized in the schematic structural design of tall buildings.

  • PDF