• Title/Summary/Keyword: Tailored-Properties

Search Result 118, Processing Time 0.038 seconds

Carbon Nanofibers with Controlled Size and Morphology Synthesized with Ni-MgO Catalyst Treated by Mechanochemical Process

  • Fangli Yuan;Ryu, Ho-Jin;Kang, Yong-Ku;Park, Soo-Jin;Lee, Jae-Rock
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Carbon nanofibers (CNFs) with uniform diameter and controlled size were prepared from catalytic decomposition of $\textrm{C}_{2}\textrm{H}_{2}$ with Ni-MgO catalyst treated by mechanochemical (MC) process. The properties of Ni catalyst, such as size, distribution and morphology, can be governed by tuning grinding time in MC process. As a result, size and structure of CNFs can be tailored. The effect of grinding time to the as-grown CNFs was studied. CNFs with diameter from 10-70 nm were synthesized. CNFs with bundle formation sharing one tip and twisted CNFs were also synthesized with catalyst treated by MC process.

  • PDF

Powder Injection Molding Technology (분말 사출 성형 기술)

  • 하태권;성환진;안상호;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.521-528
    • /
    • 2003
  • Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. This process combines a small quantity of polymer with an inorganic powder to form a feedstock that can be molded. After shaping, the polymeric binder is extracted and the powder is sintered, often to near-theoretical densities. According1y, PIM delivers structural materials in a shaping technology previously restricted to polymers. The process overcomes the shape limitations of traditional powder compaction, the costs of machining, the productivity limits of isostatic pressing and slip casting, and the defect and tolerance limitations of conventional casting. Since 1980s when major attention was given to PIM process, it has been widening the application area from small parts with complex shape and tailored properties to structural parts requiring strength and ductility as in automotive, military and medical industries.

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

Microstructural Effects Influencing the Thermal Conductivity of High-Temeprature Insulation Firebricks (고온 단열벽돌의 열전도성에 미치는 미세구조의 영향)

  • 장복기;임재봉
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.729-734
    • /
    • 1990
  • The microstructural dependence of thermal conductivity of a high-alumina (ca. 70%) heat-insulating frebricks(ca. 75%porosity) was investigated under special consideration of the tailored-pore shape effects. Pores different shape could be incorporated into the insulators through pore formers : Styrofoam produces spherical pores while saw dust results in parallel plate pores. Concerning the pore-shape effectiveness of thermal insulation, the specimen with irregular plate pores showed much lower values of heat conductivity than those with spherical pores, the values being 0.31 to 0.38 at $600^{\circ}C$ and 0.35 to 0.47 at 100$0^{\circ}C$, respectively. On the contrary, however, other material properties such as strength and softening temeprature under load were turned out to be better in the case of the spherical pores.

  • PDF

Exact analysis of bi-directional functionally graded beams with arbitrary boundary conditions via the symplectic approach

  • Zhao, Li;Zhu, Jun;Wen, Xiao D.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.101-122
    • /
    • 2016
  • Elasticity solutions for bi-directional functionally graded beams subjected to arbitrary lateral loads are conducted, with emphasis on the end effects. The material is considered macroscopically isotropic, with Young's modulus varying exponentially in both axial and thickness directions, while Poisson's ratio remaining constant. In order to obtain an exact analysis of stress and displacement fields, the symplectic analysis based on Hamiltonian state space approach is employed. The capability of the symplectic framework for exact analysis of bi-directional functionally graded beams has been validated by comparing numerical results with corresponding ones in open literature. Numerical results are provided to demonstrate the influences of the material gradations on localized stress distributions. Thus, the material properties of the bi-directional functionally graded beam can be tailored for the potential practical purpose by choosing suitable graded indices.

Biotea-2-Bioschemas, facilitating structured markup for semantically annotated scholarly publications

  • Garcia, Leyla;Giraldo, Olga;Garcia, Alexander;Rebholz-Schuhmann, Dietrich
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.14.1-14.6
    • /
    • 2019
  • The total number of scholarly publications grows day by day, making it necessary to explore and use simple yet effective ways to expose their metadata. Schema.org supports adding structured metadata to web pages via markup, making it easier for data providers but also for search engines to provide the right search results. Bioschemas is based on the standards of schema.org, providing new types, properties and guidelines for metadata, i.e., providing metadata profiles tailored to the Life Sciences domain. Here we present our proposed contribution to Bioschemas (from the project "Biotea"), which supports metadata contributions for scholarly publications via profiles and web components. Biotea comprises a semantic model to represent publications together with annotated elements recognized from the scientific text; our Biotea model has been mapped to schema.org following Bioschemas standards.

Extracted Catechin Incorporated Chitosan Patch for Dermal Drug Delivery Systems

  • Seunghwan Choy
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.458-464
    • /
    • 2023
  • In order to develop catechin patches for skin regeneration at wound sites, patches with varying concentrations of catechin and chitosan were manufactured. An optimal composition ratio was determined by adjusting the drug release rate and amount, to maximize efficiency. The catechin used in this study was extracted from green tea leaves using a solvent/ultrasonication method, and its characteristics were confirmed through Fourier transform-infrared spectroscopy (FT-IR) and high-performance liquid chromatography (HPLC) analyses. Patches were prepared with different concentrations of catechin and chitosan, and various properties were analyzed using techniques such as FT-IR, water contact angle analysis, and UV-Vis spectroscopy. It was observed that as the chitosan concentration increased, the release of catechin slowed down or almost ceased. A patch manufactured with 1.5 mg/cm2 of catechin at a 1 % chitosan concentration exhibited a high initial release rate over 24 h and demonstrated cellular biocompatibility. Consequently, these patches, with tailored release characteristics based on the concentrations of chitosan and catechin, hold promise for use as drug delivery systems in wound healing applications.

Stability analysis of the nonuniform functionally graded cylindrical small-scale beam structures: Application in sport structures

  • Changyou Wang;Mostafa Habibi;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • This research investigates the application of novel functionally graded small-scale materials (FGSMs) in sport and sports structures through an engineering design lens. Functionally graded materials (FGMs) offer tailored material properties, promising enhanced performance and durability. Utilizing an interdisciplinary approach, this study explores the integration of FGSMs in sports equipment and infrastructure. Design considerations specific to sports engineering are emphasized, including lightweight, high-strength materials capable of withstanding dynamic loads. Advanced manufacturing techniques, such as additive manufacturing and nanotechnology, enable precise control over material composition and microstructure. Computational modeling is employed to evaluate the mechanical behavior and performance characteristics of FGSM-based components. Through case studies and comparative analyses, the study showcases the potential of FGSMs to revolutionize sports equipment and structures, offering improved performance, safety, and sustainability. This research contributes to the advancement of sports engineering by exploring the design and application of FGSMs in sport and sports structures.

Photoelectrochemical Properties of TiO2 Nanotubes by Well-Controlled Anodization Process (양극산화 제어에 의한 TiO2 나노튜브의 광전기화학 특성)

  • Jeong, Dasol;Kim, Donghyun;Jung, Hyunsung
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.6
    • /
    • pp.298-305
    • /
    • 2019
  • We investigated a correlation between morphology and photoelectrochemical properties of TiO2 nanotubes fabricated by well-controlled anodization processes. Anodization in an ethylene-glycol-based electrolyte solution accelerated the rapid grow rate of TiO2 nanotubes, but also cause problems such as delamination at the interface between TiO2 nanotubes and a Ti substrate, and debris on the top of the nanotube. The applied voltages for the anodization of TiO2 were adjusted to avoid the interface delamination. The heat treatment and the anodizing time were also controlled to enhance the crystallinity of the as-prepared TiO2 nanotubes and to increase the surface area with the varied length of the anodized TiO2 nanotubes. Additionally, a 2-step anodization process was utilized to remove the debris on the tube top. The photoelectrochemical properties of TiO2 nanotubes prepared with the carefully tailored conditions were investigated. By removing the debris on TiO2 nanotubes, applied bias photon-to-current efficiency (ABPE) of TiO2 nanotubes increased up to 0.33%.

Microstructure Evolution and Tensile Properties of Al-Mg Alloy Containing a High Content of Mg by Biaxial Alternative Forging (고함량의 Mg을 함유한 Al-Mg 합금의 이축교번단조 변형에 따른 미세조직 및 인장특성 변화)

  • Shin, Y.C.;Ha, S.H.;Yoon, Y.O.;Kim, S.K.;Choi, H.J.;Hyun, K.H.;Hyun, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.361-367
    • /
    • 2019
  • Microstructure evolution and tensile properties of Al-8mass%Mg alloy casting billet by biaxial alternative forging were investigated in this study. An alternative forging system tailored in this study was used to allow continuous strain accumulations on the alloy workpiece. A finite element (FE) simulation results revealed that the strain was mainly concentrated in the core and that the shear bands developed into a form with an X shape in the cross-section of workpiece after the alternative forging using octangular rod shaped dies. With increasing the forging passes, it was observed that the Al-8mass%Mg alloy workpieces were significantly deformed, and cracks began to form and propagate on the both ends of the forged workpieces after five passes at room temperature. In as-forged microstructures taken by microscopes, twins, clustering of dislocations, and fine subgrains were found. Tensile strengths of the forged specimens showed significant increases depending on the number of forging passes, and a trade-off relationship was observed between the elongation and strength. At room temperature and 100℃ the workpieces showed similar behaviors in microstructural evolution and tensile properties depending on forging passes, while the increase range in strength was reduced at 200℃.