• 제목/요약/키워드: Tailings

Search Result 253, Processing Time 0.025 seconds

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Immobilization of Arsenic in Tailing by Fenton-like reaction (펜톤유사반응을 이용한 광미중에 비소의 불용화)

  • 정익재;최용수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.127-130
    • /
    • 2002
  • Recently, the contamination with heavy metals in closed mines has been seriously considered since it can disturb human health through the polluted drinking-water and crops. Therefore, the concerns about the remediation of polluted land and treatment technology for hazardous matters have been accelerated. However, any of practical methods for treatment and/or remediation have not been yet suggested. In this research, a novel technology was studied to immobilize arsenic in tailings and soils disturbed by mining. In this technology, Fenton-like reaction were applied to immobilize arsenic in tailings. In the examination of Fenton-like reaction using pure pyrite, $H_2O$$_2$ and arsenic, the concentrations of extracted arsenic and iron were reduced up to 90 and 75%, respectively From the result of SEM-EDS, the Immobilization of arsenic was observed on the surface of pyrite. Thus, it can be said that the coating and/or adsorption prevents the extraction of arsenic.

  • PDF

Geochemical Characteristics of Mine Wastes in Abandoned Mines in Korea (휴/폐광 광산폐기물의 지구화학적 특성)

  • 정명채;정영욱;민정식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.71-75
    • /
    • 1998
  • The objective of this study is to investigate geochemical characteristics of mine wastes including tailings in various abandoned mines in Korea. Tailings and wastes were sampled in and around 39 metalliferous mines, and analysed heavy metal concentrations including Cd, Cu, Pb and Zn extracted by 0.1N HCl and aqua regia by Atomic Absorption Spectrometry. Measurements of paste pH and lime requirement were carried out to examine a general geochemical characteristics of the materials. Lots of mine wastes were characterized by very low pH values of 2 to 4 and high lime requirement to control neutralization of the wastes. In addition, elevated levels of heavy metals were found in various mine wastes extracted by both 0.lN HCl and aqua regia. Because the mine wastes can be dispersed into the downstream by clastic movement and wind-blow, it is necessary to control the materials with a proper method for their reclamation.

  • PDF

폐탄광 부근 지하수의 오염에 관한 연구

  • 지상우;고주인;유상희;전용원;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.90-93
    • /
    • 2003
  • Sampling of waters from each stage of treatment system, SAPS (Successive Alkalinity Producing System), and spring water near the Hanchang coal mine of Kangwon. Province were carried out periodically and analyzed to evaluate the source and possible path of groundwater contamination by acid mine drainage(AMD). Chemical and sulfur isotope compositions showed that spring water was affected by seepage from mine tailings, and seepage of stonewall, a part of treatment system, was affected by both seepage from mine tailings and mine adit drainage. Through the treatment system no appreciable decrease of sulfur content was identified. And almost similar sulfur isotope compositions of water from each stage of the treatment system may suggest incomplete or very poor sulfate reduction by sulfate reducing bacteria.

  • PDF

휴.폐광산지역에서 폐재내 중금속의 존재형태 및 용출특성에 관한 연구

  • 김정호;김휘중;양재의;신경용;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.372-378
    • /
    • 2003
  • This study investigates the fractional composition and the leaching characteristics of heavy metals in polluted soils due to mining activities. The fractionated composition of heavy metals is classified into five fractions, adsorbed, carbonate, reducible, organic and residual fraction. The status of humic substances in mine wastes of most sites are polyhumic except tailing from Sangdong mine. According to the sequential extraction procedures (SEPs), leaching probabilities of Cd in coal wastes and tailing are relatively low due to high percentage of residual fraction. 46.4% of Ni in tailings from Sangdong mine is probably leached under oxidized environment, and 39.4% of Cu in these tailings is readily extracted under strongly oxidized environment by organic fraction. According to leaching condition of pH 3.0 and pH 5.6, the amount of heavy metals leached out of coal wastes and tailing increases to 1/2 hours. At pH 3.0 and pH 5.6, concentration of Ni in tailing increases up three times of the initial value. Heavy metals released from coal wastes and tailing were not influenced significantly by leaching time.

  • PDF

Utilization of Mine failings from the Jeonju-Il Mine (전주일(全州一) 금속광산(金屬鑛山) 폐광미(廢鑛尾)의 활용(活用) 방안(方案) 연구(硏究))

  • Jeong, Soo-Bok;Chae, Yeung-Bae;Hyun, Jong-Yeong;Kim, Hyung-Seok;Yoon, Sung-Moon
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.44-53
    • /
    • 2007
  • The Jeonju-Il mine tailings contain large quantities of $SiO_2\;and\;Al_2O_3$ and lesser quantities of metallic components. In this study, we studied about the possibility of using mine tailings as a raw material in various industries. it was found that the sintered mine tailings had a good quality in every respect such as chromaticity, firing shrinkage and water absorption etc. Therefore if can substitute clay mineral in the ceramic industry. Also it can substitute about 2.94% of the raw materials of ordinary portland cement. We can use the coarse tailing as the fine aggregate for the ready-mixed mortar; and the fine tailing, as the filler for the bituminous paving mixture; because both products were not only suitable for Korea industrial standard in quality, but also environmentally harmless.