• 제목/요약/키워드: Taguchi Orthogonal Array

검색결과 191건 처리시간 0.02초

마이크로스트립 패치 안테나 설계에서 타구치 직교배열표의 유용성 분석 (Analysis for Usefulness of Taguchi's Orthogonal Array in Microstrip Patch Antenna Design)

  • 김재연;장대순;허정
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.41-46
    • /
    • 2019
  • 타구치 직교배열표를 활용하여 마이크로스트립 패치 안테나 설계를 효율적으로 수행 가능한지를 분석하였다. 비교 및 분석을 위하여 U-슬롯 마이크로스트립 패치 안테나에서 U-슬롯의 모양과 변형된 급전부의 요소를 파라미터로 정했다. 해당 파라미터들의 스윕을 통해 도출된 모든 시뮬레이션의 결과와 타구치의 직교배열표를 이용하여 도출된 축소 시뮬레이션 결과를 비교분석하였다. 파라미터 스윕을 이용하여 진행된 19,683회의 시뮬레이션을 타구치의 직교배열표를 이용한 27번의 시뮬레이션으로 대폭 축소하였으며, 파라미터 스윕과 직교배열표를 이용한 시뮬레이션의 평균 10dB 대역폭은 3.7%의 오차를 가진다. 따라서, 시뮬레이션 횟수를 줄이고도 효율적으로 안테나 파라미터 특성을 파악할 수 있음을 확인했다.

다구찌 직교배열의 반응표면모델에 의한 흡차음재 소재 DB 구축 (Construction of Insulator and Isolator Database by Using Response Surface Model based on Taguchi's Orthogonal Array)

  • 이광기;김병훈;전인기;강경순;김옥빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.619-624
    • /
    • 2000
  • Design of experiments based on Taguchi's orthogonal array is utilized for exploring the design space and for building response surface models of insulator and isolator database in order to facilitate the effective solution of multi-objective optimization commonly occurred in NVH problems. Response surface models, called engineering database of design space, provide an efficient means to rapidly model the trade-off among many conflicting NVH goals in automotive. In the design of insulator and isolator in automotive interior part, it is important not only to construct effective matrices of NVH but also to build up engineering database of current products. The experimental design especially based on orthogonal array and the nonlinear optimization algorithms are successfully used together to obtain the optimal design of insulator and isolator. The $2^{nd}$ order response surface models of absorption coefficient and insertion loss are constructed by using modified Taguchi's $L_{12}2^13^7$ orthogonal array and successfully used in optimal design of insulator and isolator.

  • PDF

실험에 적합한 직교 배열표의 자동 생성 및 2 단계 구조 최적화에의 적용 (Automatic Generation of Orthogonal Arrays and Its Application to a Two-Step Structural Optimization)

  • 이수범;곽병만
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2047-2054
    • /
    • 2003
  • In this paper, an approach of automatically finding and modifying the most appropriate orthogonal array (GO) is suggested and applied to a new structural optimization procedure with two steps. GO is motivated by the situation where finding a proper orthogonal array from the tables in the literature is difficult or impossible. Now the Taguchi method is made available for various numbers of variables and levels. In the two-step structural optimization, the Taguchi method equipped with GO and a shape optimization using the finite differencing method is consecutively applied. The existence or non-existence of an element can be taken as a factor level and this feature is utilized finding the best topology from a set of potential topologies suggested from the user's expertise. This greatly enhances applicability and one can expect a better result than the case in which each step is applied independently because these steps are complementary each other.

다구찌 직교배열법을 이용한 포뮬러 레이스카 전륜 업라이트의 최적설계 (Optimal Design of the Front Upright of Formula Race Car Using Taguchi's Orthogonal Array)

  • 장운근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.112-118
    • /
    • 2013
  • Formula race car is generally recognized as a vehicle which is optimally designed for on-road race track with the regulations of race host bodies. Especially, the uprights of suspension system decisively have effects on the performance of cornering and stability of race car's driving performance, which are very important factors in the design of race car. This paper is a study of optimal upright design of F1800 grade formula race car which are normally used in professional race circuit in Korea. To design optimally the front upright of F1800 formula race car, Taguchi's orthogonal array, which is known for more useful method than full factorial design experimental method in cost and time, is used with CAE method such as FEM analysis. And the result of this paper shows that Taguchi's orthogonal array employed for this optimal design is very useful for designing the front upright of race car by minimizing its weight as well as keeping its safety factor as enough as designer wants in the view of quality, cost and delivery at the early design step.

Robust Design to the Combined Array with Multiresponse

  • Kwon, Yong-Man
    • 통합자연과학논문집
    • /
    • 제10권1호
    • /
    • pp.51-57
    • /
    • 2017
  • The Taguchi parameter design in industry is an approach to reducing performance variation of quality characteristic in products and processes. In the Taguchi parameter design, the product array approach using orthogonal arrays is mainly used. It often requires an excessive number of experiments. An alternative approach, which is called the combined array approach, was studied. In these studies, only single response was considered. In this paper we propose how to simultaneously optimize multiresponse for the robust design using the combined array approach.

다구치 방법에 의한 ASTM(F136-96)의 절삭인자 분석과 신뢰성 평가 (A Study of Cutting Factor Analysis and Reliability Evaluation of ASTM(F136-96) Material by Taguchi Method)

  • 장성민;윤여권
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.1-6
    • /
    • 2008
  • Machine operator and quality are affected by chip during cutting process to product machine parts. This paper presents a study of the influence of cutting conditions on the surface roughness obtained by turning using Taguchi method for safety of turning operator. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of its low thermal conductivity and chemical reactivity. Therefore titanium alloys are known as difficult-to materials. An orthogonal array, the signal-to-noise ratio, the analysis of variance are employed to investigate the cutting characteristics of implant material bars using tungsten carbide cutting tools of throwaway type. Also Experimental results by orthogonal array are compared with optimal condition to evaluate advanced reliability. Required simulations and experiments are performed, and the results are investigated.

다구찌 직교배열을 이용한 승용차의 실내소음 분석 및 개선 (Analysis and Improvement of Interior Noise in a Passenger Car using Taguchi Orthogonal Array)

  • 김명업;이두호
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.998-1004
    • /
    • 1999
  • The passenger car manufacturer should meet more and more strict requirements of customers on noise and vibration problems. It is proven that the Taguchi method is a powerful tool for improving the product quality in many areas. This paper employs the Taguchi method to reduce low-frequency booming noise in a passenger car. Selection of object function is very important to minimize interaction effects in the Taguchi method. We select logarithmic-scaled sound pressure level as an object function, which is commonly used to analyze the noise and vibration signals. The optimum noise level predicted with additive-model assumption agrees well with the test results. In addition, the optimum level is lower than the initial one by about 5 dB without any adverse effects. The results show that the Taguchi method can be applied efficiently to solve the noise problem in the passenger cars.

  • PDF

실험계획법을 이용한 컵 귀발생의 영향인자 해석 (Analysis on the Effect of Material and Forming Conditions on the Cup Earing by Taguchi Method)

  • 정기조
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.30.1-33
    • /
    • 1999
  • Finite element simulation with experimental analysis of Taguchi's orthogonal array was carried out to know the effects of material and forming parameters on the cup earing and skewness. It was revealed that the planar anisotropy was the most influencing factor in the cup ear formation whereas blank holding force and material properties such as strength and thickness deviation at the coil edge had a relatively high effect on the cup skewness.

  • PDF

Simultaneous Optimization of Multiple Responses to the Combined Array

  • 권용만
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.57-64
    • /
    • 2001
  • In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et al (1990) and studied by Vining and Myers (1990) and others. In these studies, only single respouse variable was considered. We propose how to simultaneously optimize multiple responses when there are correlations among responses.

  • PDF

TOPSIS와 전산직교배열을 적용한 자동차 로워암의 다수준 형상최적설계 (Multi-level Shape Optimization of Lower Arm by using TOPSIS and Computational Orthogonal Array)

  • 이광기;한승호
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.482-489
    • /
    • 2011
  • In practical design process, designer needs to find an optimal solution by using full factorial discrete combination, rather than by using optimization algorithm considering continuous design variables. So, ANOVA(Analysis of Variance) based on an orthogonal array, i.e. Taguchi method, has been widely used in most parts of industry area. However, the Taguchi method is limited for the shape optimization by using CAE, because the multi-level and multi-objective optimization can't be carried out simultaneously. In this study, a combined method was proposed taking into account of multi-level computational orthogonal array and TOPSIS(Technique for Order preference by Similarity to Ideal Solution), which is known as a classical method of multiple attribute decision making and enables to solve various decision making or selection problems in an aspect of multi-objective optimization. The proposed method was applied to a case study of the multi-level shape optimization of lower arm used to automobile parts, and the design space was explored via an efficient application of the related CAE tools. The multi-level shape optimization was performed sequentially by applying both of the neural network model generated from seven-level four-factor computational orthogonal array and the TOPSIS. The weight and maximum stress of the lower arm, as the objective functions for the multi-level shape optimization, showed an improvement of 0.07% and 17.89%, respectively. In addition, the number of CAE carried out for the shape optimization was only 55 times in comparison to full factorial method necessary to 2,401 times.