• 제목/요약/키워드: Taguchi Method Analysis of variance

검색결과 75건 처리시간 0.034초

다구찌 방법에 의한 PAC 실내기 유로의 최적설계 (Optimum Design of an Indoor Package Air-Conditioner's Flow Path by Taguchi Method)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.32-37
    • /
    • 2014
  • In this study, the optimum design process of an indoor package air-conditioner (PAC) was implemented by Taguchi method. The goal of this study is to obtain the best set condition of each control factor composing of an indoor PAC. The number of revolution of a double inlet sirocco fan installed in an indoor PAC was measured by the orthogonal array of $L_{18}(2^3{\times}3^4)$ and analysed by using the-smaller- the-better characteristic among the static characteristic analyses. As a result, the optimum condition of an indoor PAC was found as a set of when the cost of production, assembling and working conditions were considered. Moreover, the number of revolution of a double-inlet sirocco fan used for an optimum condition was reduced about 8.5% more than that of a standard condition for the target flowrate of $18.5m^3/min$.

Taguchi 방법을 이용한 STD61의 표면거칠기에 대한 볼 엔드 밀링 파라미터 최적화 (The Optimization of Ball End-Milling Parameters on the Surface Roughness of STD61 Steel using the Taguchi Method)

  • 아흐매드파루크;변지현;박기문;고태조
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.153-158
    • /
    • 2017
  • When considering the proper function and life cycle length of a product, its surface finish plays an important role. This experimental study was carried out to understand the effect of input factors on surface roughness and how it can be minimized by controlling the input parameters. This experimental work was performed by machining the surface of STD 61 blocks with a surface inclined at $30^{\circ}$ by ball end-milling and optimizing the input parameters using the Taguchi technique. Signal-to-Noise (S/N) ratio and analysis of variance (ANOVA) were applied to find the significance of the input parameters. The optimum level of input parameters to minimize surface roughness was obtained.

STS304합금의 선삭가공에서 표면거칠기의 최적화 (Optimization of Surface Roughness of STS 304 in a Turning Process)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.59-64
    • /
    • 2017
  • The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. Unfortunately, for some quality characteristics of a product such as surface roughness it is hard to ensure that these requirements will be met. Stainless steels STS 304 is frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats. In this work, the dry turning parameters of STS 304 are optimized by using Taguchi method. The experiments were conducted at three different cutting speeds with three different feed and three different depth of cut. The cutting parameters are optimized using signal to noise ratio and the analysis of variance. The effects of cutting speed and feed on surface roughness was analyzed. The results revealed that the spindle speed is the more significant parameter influencing the surface roughness.

  • PDF

마찰재의 물성 및 트라이볼로지 특성에 영향을 미치는 주요 성형인자 (Manufacturing Parameters Affecting Physical Properties and Tribological Behavior of Brake Linings)

  • 김성진;김광석;장호
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.127-132
    • /
    • 2002
  • The Taguchi method, a robust experimental design, was used to optimize manufacturing parameters of a brake lining during hot pressing and heat treatment. A friction material containing 15 ingredients was employed fur this experiment and friction and wear tests were carried out by using a pad-on-disk type tribotester. Sixteen brake linings with different manufacturing conditions were examined according to a parameter design. From the results of the signal-to-noise (S/N) ratio and the analysis of variance (ANOVA), the cause and effect of the manufacturing parameters on physical properties (hardness and porosity) and friction and wear characteristics of brake linings was obtained.

AISI 4340강의 방전가공에서 공정변수의 최적화 (Optimization of Process Parameters for AISI 4340 Steel in Electrical Discharge Machining)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.17-22
    • /
    • 2019
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. This present investigation details the determination of optimum process parameter to attain the better machining performance in EDM of AISI 4340 steel with graphite as a tool electrode. The experimental combinations are planned and analyzed by Taguchi's design of experiments approach. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The influence of process variables such as discharge current, pulse on and pulse off time, voltage and spark speed were investigated to control the various desired performance measures such as surface roughness. Analysis of Variance (ANOVA) has to be performed to know the magnitude of each factor. Investigations indicate that the surface roughness is strongly depend on pulsed current.

저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화 (Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

TOPSIS와 전산직교배열을 적용한 자동차 로워암의 다수준 형상최적설계 (Multi-level Shape Optimization of Lower Arm by using TOPSIS and Computational Orthogonal Array)

  • 이광기;한승호
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.482-489
    • /
    • 2011
  • In practical design process, designer needs to find an optimal solution by using full factorial discrete combination, rather than by using optimization algorithm considering continuous design variables. So, ANOVA(Analysis of Variance) based on an orthogonal array, i.e. Taguchi method, has been widely used in most parts of industry area. However, the Taguchi method is limited for the shape optimization by using CAE, because the multi-level and multi-objective optimization can't be carried out simultaneously. In this study, a combined method was proposed taking into account of multi-level computational orthogonal array and TOPSIS(Technique for Order preference by Similarity to Ideal Solution), which is known as a classical method of multiple attribute decision making and enables to solve various decision making or selection problems in an aspect of multi-objective optimization. The proposed method was applied to a case study of the multi-level shape optimization of lower arm used to automobile parts, and the design space was explored via an efficient application of the related CAE tools. The multi-level shape optimization was performed sequentially by applying both of the neural network model generated from seven-level four-factor computational orthogonal array and the TOPSIS. The weight and maximum stress of the lower arm, as the objective functions for the multi-level shape optimization, showed an improvement of 0.07% and 17.89%, respectively. In addition, the number of CAE carried out for the shape optimization was only 55 times in comparison to full factorial method necessary to 2,401 times.

Optimization of Wear Behavior on Cenosphere -Aluminium Composite

  • Saravanan, V.;Thyla, P.R.;Balakrishnan, S.R.
    • 한국재료학회지
    • /
    • 제25권7호
    • /
    • pp.322-329
    • /
    • 2015
  • The magnitude of wear should be at a minimum for numerous automobile and aeronautical components. In the current work, composites were prepared by varying the cenosphere content using the conventional stir casting method. A uniform distribution of particles was ensured with the help of scanning electron microscopy (SEM). Three major parameters were chosen from various factors that affect the wear. A wear test was conducted with a pin-on-disc apparatus; the controlling parameters were volume percentages of reinforcement of 5, 10, 15, and 20%, applied loads of 9.8, 29.42, and 49.03 N, and sliding speeds of 1.26, 2.51, and 3.77 m/s. The design of the experiments (DOE) was performed by varying the different influencing parameters using the full factorial method. An analysis of variance (ANOVA) was used to analyze the effects of the parameters on the wear rate. Using regression analysis, a response curve was obtained based on the experimental results. The parameters in the resulting curve were optimized using the Genetic Algorithm (GA). The GA results were compared with those of an alternate efficient algorithm called Neural Networks (NNs).

Corrosion Behavior Optimization by Nanocoating Layer for Low Carbon Steel in Acid and Salt Media

  • Ahmed S. Abbas;Bahaa Sami Mahdi;Haider H. Abbas;F.F. Sayyid;A.M. Mustafa;Iman Adnan Annon;Yasir Muhi Abdulsahib;A.M. Resen;M. M. Hanoon;Nareen Hafidh Obaeed
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.21-29
    • /
    • 2023
  • In this paper, a SiC nano electroless nickel plating layer with excellent corrosion resistance was fabricated using the Taguchi method. The electroless plated low carbon steel was subjected to tests to examine the influence of corrosive media, microhardness, and corrosion rate on the corrosion resistance of this alloy. Three different corrosive media (HCl, Na2SO4, and NaCl) at various temperatures (80, 90, and 100 ℃) were used, and at three different times (40, 80, and 120 min.) with a speed of stirring equal to 500 rpm. The results of microhardness were found from 134.276 HV to 278.578 HV at various conditions, while the corrosion rate results were obtained from 0.89643 mpy to 7.12571 mpy at different circumstances. Corrosion, and mechanical characteristics were explained using Taguchi design. Taguchi technique was used to account for all possible combinations of elements in order to conduct a complete study. Models that link the response and procedure parameters were developed using the results of these tests, and the analysis of variance was utilized to validate these models (ANOVA). For maximum efficiency, a function called "desirability" was applied to all responses at once.

Application of Taguchi Method and Orthogonal Arrays for Optimization of Adhesion of $SrZrO_3$ Coatings on Ag/Bi(2223) Tapes

  • Lee, Se-Jong;Lee, Deuk-Yong;Song, Yo-Seung;Kim, Bae-Yeon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.13-16
    • /
    • 2003
  • Adhesion of $SrZrO_3$ resistive oxide barrier on Ag sheathed Bi(2223) tapes prepared by the sol-gel and dip-coating method was evaluated with an aid of Taguchi method and Lie($2^1{\times}3^7$) orthogonal arrays to determine the optimal process combination of levels of factors that best satisfy the bigger is better quality characteristic (QC=B). For analyses of results statistical calculations such as average and analysis of variance (ANOVA) were employed to analyze the results for improving the performance qualities of the dip-coated $SrZrO_3$ film. Experimentally, the performance of the films was evaluated in terms of bond strength by varying Sr/Zr moi ratio (A), amount of organic vehicle additives (B), drying temperature (C) and time (D), heat treatment temperature (E) and time (F), respectively. The optimal combination of levels of factors was determined to be $A_3B_2C_3D_2E_1F_3$ having a 90% confidence level.