• Title/Summary/Keyword: Taguchi Method Analysis of variance

Search Result 75, Processing Time 0.023 seconds

Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion (고분자압출의 공정변수가 통기성필름강도에 미치는 영향)

  • Choi, Man-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

Experimental Study of Moisture Vapor Transmission Rate(MVTR) for Breathable Film (통기성필름의 투습도에 관한 실험적 연구)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Moisture vapor transmission rate (MVTR) is an important item for many applications of polymer breathable thin film. To determine the optimum values of the process parameters, it is essential to find their influence on The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film MVTR influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film MVTR were obtained at higher extruder speed and stretching ratio.

Novel Superabsorbent Hydrogel Based on Natural Hybrid Backbone: Optimized Synthesis and its Swelling Behavior

  • Pourjavadi, Ali;Soleyman, Rouhollah;Bardajee, Ghasem Rezanejade;Ghavami, Somayeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2680-2686
    • /
    • 2009
  • The synthesis of a novel superabsorbent hydrogel with natural hybrid backbone via graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (kC, as a polysaccharide) and gelatin (as a protein) under classic thermal conditions is described. The Taguchi method as a strong experimental design tool was used for synthesis optimization. A series of hydrogels were synthesized by proposed conditions of Qualitek-4 Software. Considering the results of 9 trials according to analysis of variance (ANOVA), optimum conditions were proposed. The swelling behavior of optimum hydrogel was measured in various solutions with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in various organic solvents, various salt solutions and On–Off switching behavior were investigated. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetrical analysis (TGA). Surface morphology of the synthesized hydrogels was assessed by scanning electron microscope (SEM).

Optimization of Cutting Parameters for Burr Minimization (버의 최소화를 위한 밀링 가공 파라미터의 최적화)

  • Lee, Sang-Heon;Lee, Seong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.130-136
    • /
    • 2001
  • Burrs formed during face milling operations are very hard to characterize because there are many parameters that affect the cutting process. Many researchers have tried to predict burr characteristics including burr size and shapes with various experimental conditions such as cutting speed, feed rate, in-plane exit angle, number of inserts, etc., but it still remains as a challenging problem for the complex combined effects between the parameters. In this paper, the Taguchi method, which is a systematic optimization application in design and analysis of experiments, is introduced to acquire optimum cutting parameters for burr minimization in face milling. Also, analysis of variance (AVOVA) is employed to study the performance characteristics in more detail. Experimental verifications are provided to show the effectiveness of this approach.

  • PDF

Optimization of Process Parameters of Die Slide Injection by Using Taguchi Method (다구치 법을 통한 다이슬라이드식 사출성형의 공정파라미터 최적화)

  • Jeong, Soo-Jin;Moon, Seong-Joon;Jeoung, Sun-Kyoung;Lee, Pyoung-Chan;Moon, Ju-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.264-269
    • /
    • 2012
  • Die slide injection marvelously reduces the cost and time in processing plastic products because they can simplify the conventional process through eliminating additional process. However, this process must resolve some defects like whitening, resin infiltration, blowhole, resin overflow, etc. In this study, the process parameters of the injection molding are optimized by using the finite element method and Taguchi method. The injection molding analysis is simulated by employing the Moldflow insight 2010 code and the 2nd injection is by adopting the Multi-stage injection code. The process parameters are optimized by using the $L_{16}$ orthogonal array and smaller-the-better characteristics of the Taguchi method that was used to produce an airtight container (coolant reservoir tank) from polypropylene (PP) plastic material.rodanwhile, the optimum values are confirmed to be similar in 95% confidence and 5% significance level through analysis of variance (ANOVA). rooreover, new products and old products were compared by mdasuring the dimensional accuracy, resulting in the improvement of dimensional stability more than 5%.

The Cutting Characteristics of Rotary Tools Using Regression Analysis (회귀분석법을 이용한 로타리 공구의 절삭 특성)

  • Maeng, Min-Jae;Jang, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • This paper deals with the study of feasibility of rotary carbide tools in the machining of aluminium alloy. A rotary tool holder was designed and manufactured for this work. Experiments were performed using Taguchi methods and regression analysis to analyse the influence of various factors and their interactions on the cutting characteristics of rotary carbide tools during machining. The cutting force is influenced the most greatly at the inclination angle. The surface roughness is influenced distinctly at depth of cut. It deduced an equation to predict cutting force and surface roughness. Hence, it could be concluded here that the proposed model agrees with the experimental data satisfactorily.

  • PDF

A study on the optimal cutting condition of a high speed feeding type laser cutting machine by using Taguchi method

  • Lim Sang-Heon;Lee Choon-Man;Chung Won Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • Cutting by a high speed laser cutting machine is one of most effective technologies to improve productivity. This paper has presented the cutting characteristics and optimal cutting conditions in a high speed feeding type laser cutting machine by using Tacuchi method in the design of experiment. An L9(34) orthogonal array is adopted to study the effect of adjustment parameters. The adjustment parameters consist of cutting speed, laser power, laser output duty and assistant gas pressure. The surface roughness of sheet metal is regarded as a quality feature. Analysis of variance is performed in order to evaluate the effect of adjustment parameters on the quality feature of laser cutting process.

다구찌 방법을 이용한 공정변수의 최적화

  • 이수호;박원식;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.907-910
    • /
    • 1995
  • Though SLA(Stereolithography Apparatus) is being recognized as an innovative technology, it still can not be used to fully practical applications since it lacks of dimensional accuracy compared to conventional processes. In SLA, the accuracy of cured part depends upon the set of process parmeters. In order to improve the accuracy of SLA, this paper quantitatively evaluates how largely each process parameter of SLA contributes to the part accuracy and estimates the optimal set of process parameter which minimizes the dimensional errors of the test part, "letter-H" part. For this purpose, we use ANOVA(analysis of variance) and S/N(signal-to-noise)ratio of Taguchi method.hi method.

  • PDF

Optimization of a geometric form and cutting conditions of a metal slitting saw by experimental method (실험적 방법을 통한 Metal slitting saw의 형상 및 절삭 조건의 최적화)

  • 정경득;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.934-938
    • /
    • 2000
  • Built-up edge affects the surface integrity of the machined surface and tool wear. Tool geometry and cutting conditions are very important factors to remove BUE. In this paper, we optimized the geometry of the metal slitting saw .1nd cutting conditions to remove BUE by the experiment. In general, the metal slitting saw is plain milling cutter with thickness less of a 3/16 inch. This is used for cutting workpiece where high dimensional accuracy and surface finish are necessary. The experiment was planned with Taguchi method that is based on the orthogonal array of design factors(coating, rake angle, number of tooth, cutting speed, feed rate). Response table was made by the value of the surface roughness, the optimized tool geometry and cutting conditions through response table could be determined. In addition. the relative effect of factors were identified by the variance analysis. filially. coating and cutting speed turned out important factors.

  • PDF

A Study on the Optimal Cutting Condition of High Speed Feeding Type Laser Cutting Machine by Taguchi Method (다구찌 방법을 이용한 고속 이송방식 레이저 절단기의 최적 절단 조건에 관한 연구)

  • 임상헌;박동근;이춘만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.77-83
    • /
    • 2004
  • Cutting by a high speed laser cutting machine is one of most effective technologies to improve productivity. This paper has studied to obtain the cutting characteristics and optimal cutting conditions in a high speed feeding type laser cutting machine by Tacuchi method in design of experiments. A Lf(34) orthogonal array is adopted to study the effect of adjustment parameter. The adjustment parameters consist of cutting speed, laser power, laser output duty and assistant gas pressure. And the quality feature is selected as surface roughness of sheet metal. Variance analysis is performed in order to evaluate the effect of adjustment parameters on the quality feature of laser cutting process.