• Title/Summary/Keyword: Taguchi Method

Search Result 884, Processing Time 0.04 seconds

Design of a Concrete Mix Considering Curing Temperature and Delay Time in Concrete Placement (현장 콘크리트 타설시 양생온도와 대기시간을 고려한 배합설계 결정)

  • Moon, Sungwoo;Lee, Seong-Haeng;Choi, Hyun-Uk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.133-140
    • /
    • 2019
  • The concrete mix should be designed and produced to reflect the specific site conditions during concrete placement. That is, the concrete mix design should be planned considering temperatures, work environments, pouring methods, etc. The objective of this research is to understand the external factors of curing temperature and delay time that influence concrete strengths during pouring work, and provide concrete mix design that can be most robust to the effects of external factors. The Taguchi's robust method is used in preparing the concrete mix design to achieve the research objective. In a case study, an indoor concrete test was performed to find the optimal combination of concrete mixes with external factors of curing temperature and delay time. Concrete test cylinders were made to test concrete strengths given different external factors. The study results showed that the optimal performance of concrete strength can be achieved by applying the robust method when preparing a concrete mix design.

Statistical approach to obtain the process optimization of texturing for mono crystalline silicon solar cell: using robust design (단결정 실리콘 태양전지의 통계적 접근 방법을 이용한 texturing 공정 최적화)

  • Kim, Bumho;Kim, Hoechang;Nam, Donghun;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.47.2-47.2
    • /
    • 2010
  • For reducing outer reflection in mono-crystalline silicon solar cell, wet texturing process has been adapted for long period of time. Nowadays mixed solution with potassium hydroxide and isopropyl alcohol is used in silicon surface texturing by most manufacturers. In the process of silicon texturing, etch rate is very critical for effective texturing. Several parameters influence the result of texturing. Most of all, temperature, process time and concentration of potassium hydroxide can be classified as important factors. In this paper, temperature, process time and concentration of potassium hydroxide were set as major parameters and 3-level test matrix was created by using robust design for the optimized condition. The process optimization in terms of lowest reflection and stable etch rate can be traced by using robust design method.

  • PDF

Optimization of Passenger Safety Restraint System for USNCAP by Response Surface Methodology (USNCAP에 대응하는 반응표면법을 이용한 조수석 안전구속장치 최적화)

  • Oh, Eun-Kyung;Lee, Ki-Sun;Son, Chang-Kyu;Kim, Dong-Seok;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • Safety performance of a new car is evaluated through USNCAP and their results in the star rating are provided to the consumers. It is very important to obtain high score of USNCAP to appeal their performance to consumers. Therefore the car companies have made the effort to improve their car safety performance. These efforts should satisfy the demand not only to get high score but also to pass the FMVSS, NHTSA regulations on safety. Huge numbers of car crash tests have been conducted on these bases by car companies. However physical tests spend too much cost and time, as an alternative way, the simulation on the car crash could be a solution to reduce the cost and time. Therefore the simulations have been widely conducted in car industry and various researches on this have been reported. In this study, restraint system had been optimized to minimize the injury of female passenger. Belted $5^{th}%ile$ female frontal crash test was selected from various test methods of USNCAP for the study. Initial velocity of the test was 56km/h. The combination injury probability of USNCAP was selected as an objective function and the injury limit value, which was defined in FMVSS, was set to an optimization constraint. Many researches that were similar to this study had been conducted, however most of them had limitation that interaction between airbag and safety belt had not been considered. Contrary to these researches, the interaction was considered in this study.

A study on Optimal Design for the Inductance and Coreloss of Plate Type Induction Heater for Electric Vehicle (전기자동차용 판형 인덕션 히터의 인덕턴스 및 철손 최적설계 연구)

  • Kang, Jun-Kyu;Jo, Byoung-Wook;Kim, Ki-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.425-430
    • /
    • 2018
  • The battery system of an electric vehicle suffers from the problem the battery output and the service life decrease at low temperature. A Positive Temperature Coefficient(PTC) heater is used for maintaining room temperature but is heavy due to a complicated insulation structure. The larger the weight is, the lower the fuel economy of the electric vehicle is. On the other hand a induction heater have a simple insulation structure, which is effective in weight reduction and has a rapid temperature rise. The induction heater consists of an LC resonance circuit. The larger the capacitance is, the higher the price and weight is. Therefore, the inductance should be increased to reduce the capacitance. Also, the main heat source of the induction heater is coreloss. So, it is important to optimize inductance and coreloss in terms of electromagnetic field design. In this paper, the inductance and the coreloss according to the change of the induction heater structure were optimized through the Taguchi method and Finite Element Method(FEM) simulation.

Development of the Dual Cyclone System for a High Efficient Vacuum Cleaner (사이클론 집진 원리를 적용한 진공청소기 개발에 관한 연구)

  • Lee, Jae-Keun;Lee, Jung-Eun;Kim, Seong-Chan;Cho, Min-Chul;Hyun, Choong-Nam;Kwack, Dong-Jin;Lim, Kyung-Suk;Lee, Sung-Hwa;Yang, Byung-Sun;Ji, Heon-Pyung;Jeong, Hoi-Kil;Park, Deog-Bae;Liu, Benjamin Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.644-649
    • /
    • 2000
  • A new cyclone system for the vacuum cleaner to collect dusts has been studied experimentally and numerically to meet the constant suction power, hygienic exhaust and a reduction of maintenance cost. The cyclone system of the vacuum cleaner consists of twin cyclones for improving dust collection efficiency. The first. cyclone catches large dust particles and the second one having two separated flows to decrease pressure drop collects small dust particles. The optimal design factors such as dust collection efficiency, pressure drop, and cut-size are investigated from the experimental results by the Taguchi method. Cyclone cleaner systems designed in this study has a good Performance taking into account the dust collection efficiency of 93% and the cut-size of $1.6{\mu}m$ in mass median diameter at the flow rate of 1 CMM. The cyclone vacuum cleaner showed the potential to be an effective method to collect dusts generated in the household.

  • PDF

Effect of Design Factors on the Performance of Stratified Thermal Storage Tank (성층축열조의 성능에 대한 설계인자의 영향)

  • Chung Jae Dong;Park Joohyuk;Cho Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1077-1083
    • /
    • 2004
  • This study is to systematically analyze the effect of various kinds of design factors on the performance of stratified thermal storage tank. Taguchi method, known as a very reasonable tool in the parametric study, is employed in the present work. Three dimensional unsteady numerical experiment is conducted for 4 design parameters of stratified thermal storage tank: inlet Reynolds number, Froude number, diffuser size d with 3 levels (Re=400, 800, 1200, Fr=0.5, 1.0, 2.0 and d=150 mm, 200mm, 300 mm) and diffuser shape with 2 levels. Orthogonal array $L_{18}(2{\times}3^7)$ is adopted for the analysis of variance. The result gives quantitative estimation of the various design parameters affecting the performance and helps to select the main factors for the optimum design of stratified thermal storage tank. Reynolds number is found to be the most dominant parameter and the diffuser shape plays significant role on the performance of stratified thermal storage tank. Based on this finding, the prior questions on the contribution of the diffuser shape proposed by the authors become clear. The optimum condition for the performance is a set of d=300mm, Re=800, and radial regulated plate diffuser. Conformation test shows the repeatability in the analysis and $1.3\%$ difference between the estimated thermocline thickness and that of numerical result.

Numerical Analysis of Thermal Deformation of a PCB for Semiconductor Package at Panel, Strip and Unit Levels (수치해석을 이용한 판넬과 스트립 및 유닛 레벨 반도체 패키지용 PCB의 열변형 해석)

  • Cho, Seunghyun;Ko, Youngbae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.23-31
    • /
    • 2019
  • In this study, we conducted numerical analyses using the Taguchi method and finite element method to calculate the thermal deformation of a printed circuit board and the effect of design factors on the thermal deformation. Analysis results showed that the thermal deformation of the panel had the strongest effect on the thermal deformation and shape of the strip and unit. In particular, the deformation in the z direction was larger than that in the xy-plane direction. The effect of design factors and the design conditions for reducing the thermal deformation of the panel and strip changed at the unit level. Therefore, it is recommended that panel-level thermal deformation must be controlled to reduce the final thermal deformation at the unit level because the thermal deformation of the strip strongly affects that of the unit.

Optimization of Design Parameters of a EPPR Valve Solenoid using Artificial Neural Network (인공 신경회로망을 이용한 전자비례 감압밸브의 솔레노이드 형상 최적화)

  • Yoon, Ju Ho;Nguyen, Minh Nhat;Lee, Hyun Su;Youn, Jang Won;Kim, Dang Ju;Lee, Dong Won;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 2016
  • Unlike the commonly used On/Off solenoid, constant attraction force which is independent of plunger displacement is a considerably important characteristic to proportional solenoid of the EPPR Valve. Attraction force uniformity is mainly affected by the internal shape design parameters. Due to a number of shape design parameters, the optimal parameter values are very complex and time consuming to find by trial and error method. Much research has been conducted or are still in progress to find the optimal parameter values by applying various optimization techniques like Genetic Algorithm, Evolution Strategy, Simulated Annealing, or the Taguchi method. In this paper, the design parameters which have primary effects on the attraction force uniformity and the average attraction force are decided by main effects analysis of Design of Experiments. Optimal parameter values are derived using finite-element analysis and a neural network model.

Deduction and Verification of Optimal Factors for Stent Structure and Mechanical Reaction Using Finite Element Analysis (스텐트의 구조 및 기계적인 반응에 대한 최적인자 도출과 유한요소해석법을 통한 검증)

  • Jeon, Dong-Min;Jung, Won-Gyun;Kim, Han-Ki;Kim, Sang-Ho;Shin, Il-Gyun;Jang, Hong-Seok;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • Recently, along with technology development of endoscopic equipment, a stent has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. To this end, optimal factors are simulated for the stent structure and mechanical reaction and verified using finite element analysis. In order to compare to present commercialized product such as Zilver (Cook, Bloomington, Indiana, USA) and S.M.A.R.T (Cordis, Bridgewater Towsnhip, New Jersey, USA), mechanical impact factors were determined through Taguchi factor analysis, and flexibility and expandability of all the products including ours were tested using finite element analysis. Also, important factors were sought that fulfill the optimal condition using central composition method of response surface analysis, and optimal design were carried out based on the important factors. From the centra composition method of Response surface analysis, it is found that importat factors for flexibility is stent thickness (T) and unit area (W) and those for expandability is stent thickness (T). In results, important factors for optimum condition are 0.17 mm for stent thickness (T) and $0.09\;mm^2$ for unit area (W). Determined and verified by finite element analysis in out research institute, a stent was manufactured and tested with the results of better flexibility and expandability in optimal condition compared to other products. Recently, As Finite element analysis stent mechanical property assessment for research much proceed. But time and reduce expenses research rarely stent of optimum coditions. In this research, Important factor as mechanical impact factor stent Taguchi factor analysis arrangement to find flexibility with expansibility as Finite element analysis. Also, Using to Center composition method of Response surface method appropriate optimized condition searching for important factor, these considering had design optimized. Production stent time and reduce expenses was able to do the more coincide with optimum conditions. These kind of things as application plan industry of stent development period of time and reduce expenses etc. be of help to many economic development.

The Effects of Substrate Bias Voltage on the Formation of $(ZnS)_{1-x}-(SiO_2)_x$ Protective Films in Phase Change Optical Disk by R.F. Sputtering Method. (R.F. 스퍼터링법에 의한 상변화형 광디스크의 $(ZnS)_{1-x}-(SiO_2)_x$ 보호막 제조시 기판 바이어스전압의 영향)

  • Lee, Tae-Yun;Kim, Do-Hun
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.961-968
    • /
    • 1998
  • In order to investigate the effects of substrate bias voltage on the formation of$ZnS-SiO_2$ protective film in phase change optical disk by R.F. magnetron sputtering method, thin dielectric film was formed on Si wafer and Corning glass by using ZnS(80mol%)-$SiO_2$(20mol%)t arget under argon gas. In this study, the Taguchi experimental method was applied in order to obtain optimum conditions with reduced number of experiments and to control numerous variables effectively. At the same time this method can assure the reproducibility of experiments. Optimum conditions for film formation obtained by above method were target RF power of 200 W. substrate RF power of 20 W, Ar pressure of 5 mTorr. sputtering time of 20 min.. respectively. The phase of specimen was determined by using XRD and TEM. The compositional analysis of specimen was performed by XPS test. In order to measure the thermal resistivity of deposited specimen, annealing test was carried out at $300^{\circ}C$ and $600^{\circ}C$. For the account of void fraction in thin film, the Bruggeman EMA(Effective Medium Approximation) method was applied using the optical data obtained by Spectroscopic Ellipsometry. According to the results of this work, the existence of strong interaction between bias voltage and sputtering time was confirmed for refractive index value. According to XRD and TEM analysis of specimen, the film structure formed in bias voltage resulted in more refined structures than that formed without bias voltage. But excess bias voltage resulted in grain growth in thin film. It was confirmed that the application of optimum bias voltage increased film density by reduction of void fraction of about 3.7%.

  • PDF