• Title/Summary/Keyword: Tactile sensors

Search Result 77, Processing Time 0.034 seconds

Pressure Measurement of Planing Hull Stern Bottom by Tactile Sensors (접촉식 센서를 이용한 고속 활주선 선미부 압력 계측 시험)

  • Park, Sae Yong;Park, Jong Yeol;Lee, Shin Hyung;Kim, Dong Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.431-437
    • /
    • 2018
  • The running attitude of a planing hull is determined by the pressure distribution on the hull bottom, and it significantly affects hydrodynamic performance of the ship, i.e., resistance, maneuverability, and seakeeping ability. Therefore, it is essential to investigate pressure distribution on the hull bottom in order to improve hull design. In the present study, a novel pressure measurement system using tactile sensors was introduced for a planing hull. The test model was a 23 m-class planing hull with a hard chine. The pressure measurement showed that the pressure at the transom was lower than the atmospheric pressure, owing to flow separation at the transom.

An experimental study on the stern bottom pressure distribution of a high-speed planing vessel with and without interceptors

  • Seok, Woochan;Park, Sae Yong;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.691-698
    • /
    • 2020
  • In this study, the effects of hydrodynamic interceptors on a high-speed vessel were investigated to identify the operating principle based on experiments. Model tests were performed using a high-speed towing carriage. The resistance, trim and rise of Center of Gravity (CG) of the high-speed vessel were measured for various ship speeds and interceptor heights. As the interceptor height increased, the trim and rise of CG were reduced. In order to quantitatively analyze these phenomena, the pressure at the stern bottom was measured using tactile sensors. The reliability of the measured results from the tactile sensors was verified through repeat tests. The pressure on the stern bottom increased in proportion to the interceptor height, as the interceptor partially blocked the flow there. Then, the trim was reduced. However, as the ship speed increases, the pressure at the location close to the interceptor decreases when the interceptor height is small, leading to increased trim. Therefore, the interceptor height for running attitude control should be carefully determined considering multiple factors in the operating condition of the high-speed planing hull.

Development of an Array-Type Flexible Tactile Sensor Using PVDF and Flexible Circuitry

  • Kwon, Tae-Kyu;Yu, Kee-Ho;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.200-208
    • /
    • 2002
  • This paper represents the development of an array-type flexible tactile sensor using PVDF(polyvinylidene fluoride) film and flexible circuitry. The tactile sensor which has $8{\times}8$ taxels is made by using PVDF film and FPC(flexible printed circuit) technique. Experimental results on static and dynamic properties are obtained by applying arbitrary forces and frequencies generated by the shaker. In the static characteristics, the threshold and the linearity of the sensor are investigated. Also dynamic response of the sensor subjected to the variable frequencies is examined. The signals of a contact force to the tactile sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. Finally, the signals are integrated for taking the force profile. The processed signals of the outputs of the sensor are visualized on a personal computer, the shape and force distribution of the contacted object are obtained using two and three-dimensional image in real time. The reasonable performance for the detection of contact state is verified through the experiment.

Recognition of object in the robot gripper using tactile sensor (접촉센서를 이용한 로보트 gripper 내의 부품의 형상인식)

  • 윤지섭;이재설;박병석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.422-427
    • /
    • 1988
  • The purpose of this research is to develope a algorithm characterizing the grasp of the randomly fed objects using the tactile sensor. The tactile sensor used is composed of the 10 x 16 arrays of optical sensors and the planar resolution is 1.8 x 1.8 mm$^{2}$. The square and circular plate are used for the investigation of the characteristics of this sensor. The result shows that the measuring performance of the square plate is superior to that of the circular plate. Based upon this result the algorithm for the assembly of the electric plug was developed and was implemented using the mini-robot.

  • PDF

Development of fabric-based optical fiber tactile sensor using optical fiber bending loss (광섬유 굽힘 손실을 이용한 직물 기반의 광섬유 촉각센서 개발)

  • Kim, Ju-Young;Baek, Sang-Ho;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.210-216
    • /
    • 2009
  • In this paper the tactile sensor system based on the bending loss of optical fiber sensor is presented. The sensor array was designed with fabric structure. The optical measuring system was composed of LED for light source and CCD camera for the signal light detector. Performance of this tactile sensor system was evaluated in various environments and compared with Harmon's design criteria. The result shows that load range is 3 g$\sim$100 g, resolution is 1.5 g, hysteresis error is 1.5%. The response linearity is good and flexibility of sensor array is excellent.

Development of Contact Force Measurement Algorithm for a 3D Printing-type Flexible Tactile Sensor (3D 프린팅 방식 유연 촉각센서의 접촉력 측정 알고리즘 개발)

  • Jeong, Kyeong-Hwa;Lee, Ju-Kyoung;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Flexible tactile sensors can provide valuable feedback to intelligent robots regarding the environment around them. This is especially important when robots such as, service robots share a workspace with humans. This paper presents a contact force measurement algorithm of a flexible tactile sensor. This sensor is manufactured by a direct-writing technique, which is one 3D printing method, using multi-walled carbon nano-tubes. An analog signal processing circuit has been designed and implemented to reduce noise contained in the sensor output. In addition, a digital version of the Butterworth filter was implemented by software running on a microcontroller. Through various experiments, characteristics of the sensor system have been identified. Based on three traits, an algorithm to detect the contact and measure the contact force has been developed. The entire system showed a promising prospect to detect the contact over a large and curved area.

Alternative tactile sensor for measuring rehabilitation study using to neural network (신경망을 적용한 재활훈련 측정용 대체 촉각 센서 연구)

  • Lim, Seung-Cheol;Jin, Go-Whan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.23-29
    • /
    • 2012
  • Injured peoples usually care their body at medical institutions. But if they need some more rehabilitation to the affected area thus exist. These medical institutions according to the scale there are significant differences in rehabilitation programs, most of the small-scale rehabilitation program for medical doctors and patients to be progression of the conversation is an issue. In this paper, in a small medical facility rehabilitation to assist in the accuracy and reliability, physical contact and force sensors that can measure a combination of substitution and the tactile sensor and tactile sensor alternative with a similar function is proposed. Perceptron neural networks by applying the contact evaluation according to the algorithm to determine the pattern is applied.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

Design and Implementation of a Readout Circuit for a Tactile Sensor Pad Based on Force Sensing Resistors (FSR로 구성된 촉각 센서 패드용 Readout 회로의 설계 및 구현)

  • Yoon, Seon-ho;Baek, Seung-hee;Kim, Cheong-worl
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.331-337
    • /
    • 2017
  • A readout circuit for a tactile sensor pad based on force sensing resistors was proposed, which was composed of an analog signal conditioning circuit and a digital circuit with a microcontroller. The conventional signal conditioning circuit has a dc offset voltage in the output signal, which results from the reference voltage applied to the FSR devices. The offset voltage reduces the dynamic range of the circuit and makes it difficult to operate the circuit under a low voltage power supply. In the proposed signal conditioning circuit, the dc offset voltage was removed completely. The microcontroller with A/D converter and D/A converter was used to enlarge the measurement range of pressure. For this, the microcontroller adjusts the FSR reference voltage according to the resistance magnitude of FSR under pressure. The operation of the proposed readout circuit which was connected to a tactile sensor pad with $5{\times}10$ FSR array was verified experimentally. The experimental results show the proposed readout circuit has the wider measurement range of pressure than the conventional circuit. The proposed circuit is suitable for low voltage and low power applications.

Compensation of the Error Rate for the Non-invasive Sphygmomanometer System Using a Tactile Sensor

  • Jeong, In-Cheol;Choi, Yoo-Nah;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.136-141
    • /
    • 2007
  • The Purpose Of This Paper Is To Use A Tactile Sensor To Compensate The Error Rate. Most Automated Sphygmomanometers Use The Oscillometric Method And Characteristic Ratio To Estimate Systolic And Diastolic Blood Pressure. However, Based On The Fact That Maximum Amplitude Of The Oscillometric Waveform And Characteristic Ratio Are Affected By Compliance Of The Aorta And Large Arteries, A Method To Measure The Artery Stiffness By Using A Tactile Sensor Was Chosen In Order To Integrate It With The Sphygmomanometer In The Future Instead Of Using Photoplethysmography. Since Tactile Sensors Have Very Weak Movements, Efforts Were Made To Maintain The Subject's Arm In A Fixed Position, And A 40hz Low Pass Filter Was Used To Eliminate Noise From The Power Source As Well As High Frequency Noise. An Analyzing Program Was Made To Get Time Delay Between The First And Second Peak Of The Averaged Digital Volume Pulse(${\Delta}t_{dvp}$), And The Subject's Height Was Divided By ${\Delta}t_{dvp}$ To Calculate The Stiffness Index Of The Arteries($Si_{dvp}$). Regression Equations Of Systolic And Diastolic Pressure Using $Si_{dvp}$ And Mean Arterial Pressure(Map) Were Computed From The Test Group (60 Subjects) Among A Total Of 121 Subjects(Age: $44.9{\pm}16.5$, Male: Female=40:81) And Were Tested In 61 Subjects To Compensate The Error Rate. Error Rates Considering All Subjects Were Systolic $4.62{\pm}9.39mmhg$, And Diastolic $14.40{\pm}9.62mmhg$, And Those In The Test Set Were $3.48{\pm}9.32mmhg,\;And\;14.34{\pm}9.67mmhg$ Each. Consequently, Error Rates Were Compensated Especially In Diastolic Pressure Using $Si_{dvp}$, Various Slopes From Digital Volume Pulse And Map To Systolic-$1.91{\pm}7.57mmhg$ And Diastolic $0.05{\pm}7.49mmhg$.