• Title/Summary/Keyword: Tactile sensor system

Search Result 68, Processing Time 0.031 seconds

Development of Fingertip Tactile Sensor for Detecting Normal Force and Slip

  • Choi, Byung-June;Kang, Sung-Chul;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1808-1813
    • /
    • 2005
  • In this paper, we present the finger tip tactile sensor which can detect contact normal force as well as slip. The developed sensor is made of two different materials, such as polyvinylidene fluoride(PVDF) that is known as piezoelectric polymer and pressure variable resistor ink. In order to detect slip to surface of object, a PVDF strip is arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, we developed a tactile sensing system by miniaturizing the charge amplifier, in order to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

  • PDF

Development of Contact Force Measurement Algorithm for a 3D Printing-type Flexible Tactile Sensor (3D 프린팅 방식 유연 촉각센서의 접촉력 측정 알고리즘 개발)

  • Jeong, Kyeong-Hwa;Lee, Ju-Kyoung;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Flexible tactile sensors can provide valuable feedback to intelligent robots regarding the environment around them. This is especially important when robots such as, service robots share a workspace with humans. This paper presents a contact force measurement algorithm of a flexible tactile sensor. This sensor is manufactured by a direct-writing technique, which is one 3D printing method, using multi-walled carbon nano-tubes. An analog signal processing circuit has been designed and implemented to reduce noise contained in the sensor output. In addition, a digital version of the Butterworth filter was implemented by software running on a microcontroller. Through various experiments, characteristics of the sensor system have been identified. Based on three traits, an algorithm to detect the contact and measure the contact force has been developed. The entire system showed a promising prospect to detect the contact over a large and curved area.

A Biomimetic Artificial Neuron Matrix System Based on Carbon Nanotubes for Tactile Sensing of e-Skin (인공촉각과 피부를 위한 탄소나노튜브 기반 생체 모방형 신경 개발)

  • Kim, Jong-Min;Kim, Jin-Ho;Cha, Ju-Young;Kim, Sung-Yong;Kang, In-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.188-192
    • /
    • 2012
  • In this study, a carbon nanotube (CNT) flexible strain sensor was fabricated with CNT based epoxy and rubber composites for tactile sensing. The flexible strain sensor can be fabricated as a long fibrous sensor and it also may be able to measure large deformation and contact information on a structure. The long and flexible sensor can be considered to be a continuous sensor like a dendrite of a neuron in the human body and we named the sensor as a biomimetic artificial neuron. For the application of the neuron in biomimetic engineering, an ANMS (Artificial Neuron Matrix System) was developed by means of the array of the neurons with a signal processing system. Moreover, a strain positioning algorithm was also developed to find localized tactile information of the ANMS with Labview for the application of an artificial e-skin.

Development of fabric-based optical fiber tactile sensor using optical fiber bending loss (광섬유 굽힘 손실을 이용한 직물 기반의 광섬유 촉각센서 개발)

  • Kim, Ju-Young;Baek, Sang-Ho;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.210-216
    • /
    • 2009
  • In this paper the tactile sensor system based on the bending loss of optical fiber sensor is presented. The sensor array was designed with fabric structure. The optical measuring system was composed of LED for light source and CCD camera for the signal light detector. Performance of this tactile sensor system was evaluated in various environments and compared with Harmon's design criteria. The result shows that load range is 3 g$\sim$100 g, resolution is 1.5 g, hysteresis error is 1.5%. The response linearity is good and flexibility of sensor array is excellent.

Polyimide-based Tactile Sensor Module by Polymer Micromachining Technology (폴리머 마이크로머시닝 기술에 의한 폴리이미드 촉각 센서 모듈)

  • Kim, Kunn-Yun;Lee, Kang-Ryeol;Geum, Chang-Wook;Pak, James Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1524-1525
    • /
    • 2007
  • A flexible tactile sensor module based on polyimide matrix integrated with sensing elements and pluggable terminals connector was fabricated by polymer micromachining technology for robotic applications. The tactile sensor arrays are composed of $4{\times}4$, $8{\times}8$ and $16{\times}16$ sensing elements connected with pluggable terminals connector, respectively. Especially, both the tactile sensor array and the pluggable terminals are formed in the sensor module during the fabrication process. The fabricated tactile sensor module is measured continuously in the normal force range of $0{\sim}1N$ with tactile sensor auto-evaluation system. The value of resistance is relatively increased linearly with normal force in the overall range. The variation rate of resistance is about 2.0%/N in the range of $0{\sim}0.6N$ and 1.5%/N in the range of $0.6{\sim}1N$. Also, the flexibility of the sensing module is adequate to be placed on any curved surface as cylinder because the matrix consists of polymer and metal thin film.

  • PDF

Flexible tactile sensor array for foot pressure mapping system in a biped robot

  • Chuang, Cheng-Hsin;Liou, Yi-Rong;Shieh, Ming-Yuan
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.535-547
    • /
    • 2012
  • Controlling the balance of motion in a context involving a biped robot navigating a rugged surface or a step is a difficult task. In the present study, a $3{\times}5$ flexible piezoelectric tactile sensor array is developed to provide a foot pressure map and zero moment point for a biped robot. We introduce an innovative concept involving structural electrodes on a piezoelectric film in order to improve the sensitivity. The tactile sensor consists of a polymer piezoelectric film, PVDF, between two patterned flexible print circuit substrates (FPC). Additionally, a silicon rubber bump-like structure is attached to the FPC and covered by a polydimethylsiloxane (PDMS) layer. Experimental results show that the output signal of the sensor exhibits a linear behavior within 0.2 N ~ 9 N, while its sensitivity is approximately 42 mV/N. According to the characteristic of the tactile sensor, the readout module is designed for an in-situ display of the pressure magnitudes and distribution within $3{\times}5$ taxels. Furthermore, the trajectory of the zero moment point (ZMP) can also be calculated by this program. Consequently, our tactile sensor module can provide the pressure map and ZMP information to the in-situ feedback to control the balance of moment for a biped robot.

Fabrication and Characteristic Evaluation of a Flexible Tactile Sensor Using PVDF (PVDF를 이용한 유연 촉각센서의 제작과 특성 평가)

  • Yu, Kee-Ho;Yun, Myung-Jong;Kwon, Tae-Gyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.161-166
    • /
    • 2001
  • The prototype of a tactile sensor with $4\times 4$ taxels using PVDF was fabricated. The electrode patterns of the thin Cu tape are attached to the 28${\mu}{\textrm}{m}$ thickness PVDF using conductive adhesive and covering the sensor using polyester film for insulation. The structure of the sensor is flexible and the fabrication procedure is easy relatively. Also the output characteristics of the sensor was nearly linear with 8% deviation. The signals of a contact pressure to the tactile sensor are sensed and processed through A/D converter, DSP system and personal computer. The reasonable performance for the detection of contact shape and force distribution was verified through the experiment.

  • PDF

Polymer Micromachined Flexible Tactile Sensor for Three-Axial Loads Detection

  • Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.130-133
    • /
    • 2010
  • A flexible three-axial tactile sensor was fabricated on Kapton polyimide film using polymer micromachining technology. Nichrome (Ni:Cr = 8:2) strain gauges were positioned on an etched membrane to detect normal and shear loads. The optimal positions of strain gauges were determined through strain distribution from finite element analysis. The sensor was evaluated by applying normal and shear loads from 0 N to 0.8 N using an evaluation system. Sensitivity of the tactile sensor to normal and shear loads was about 206.6 mV/N and 70.1 mV/N, respectively. The sensor showed good linearity, and its determination coefficient ($R^2$) was about 0.982. The developed sensor can be applied in a curved or compliant surface that requires slip detection and flexibility, such as a robotic fingertip.

Development of Compliance Emulator System (콤플라이언스 에뮬레이터 시스템의 개발)

  • Park, Chan-Won;Shin, Young-kyun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.351-359
    • /
    • 1999
  • If the tactile sense is introduced to engineering and industries, it may provide more realistic virtual tactile sensing to human and it is possible to develop product that satisfy various consumer's taste. This paper presents a compliance emulator system as a new concept of tactile reproduction simulator which uses magnetic levitation in order to minimize friction and emulates compliance only along the vertical direction. Compliance is one of the important mechanical properties of the object related to tactile sensing of the human. The implemented system equipped with an analog LVDT sensor for a position sensor and employs a PD control with gravity compensation to emulate the specified compliance. To compensate the limited range of the system, the method of attaching the spring with various magnitude of stiffness to the system is adopted and its preliminary test is performed to confirm the validity of the method.

  • PDF

Development of an Array-Type Flexible Tactile Sensor Using PVDF and Flexible Circuitry

  • Kwon, Tae-Kyu;Yu, Kee-Ho;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.200-208
    • /
    • 2002
  • This paper represents the development of an array-type flexible tactile sensor using PVDF(polyvinylidene fluoride) film and flexible circuitry. The tactile sensor which has $8{\times}8$ taxels is made by using PVDF film and FPC(flexible printed circuit) technique. Experimental results on static and dynamic properties are obtained by applying arbitrary forces and frequencies generated by the shaker. In the static characteristics, the threshold and the linearity of the sensor are investigated. Also dynamic response of the sensor subjected to the variable frequencies is examined. The signals of a contact force to the tactile sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. Finally, the signals are integrated for taking the force profile. The processed signals of the outputs of the sensor are visualized on a personal computer, the shape and force distribution of the contacted object are obtained using two and three-dimensional image in real time. The reasonable performance for the detection of contact state is verified through the experiment.