• 제목/요약/키워드: Tactile Sensing

검색결과 57건 처리시간 0.046초

Fine Feature Sensing and Restoration by Tactile Examination of PVDF Sensor

  • Yoon, Seong-Sik;Kang, Sung-Chul;Lee, Woo-Sub;Choi, Hyouk-Ryeol;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.942-947
    • /
    • 2003
  • An important signal processing problem in PVDF sensor is the restoration of surface information from electric sensing signals. The objectives of this research are to design a new texture sensing system and to develop a new signal processing algorithm for signals from the sensor to be tangibly displayed by tangible interface systems. The texture sensing system is designed to get surface information with high resolution and dynamic range. First, a PVDF sensor is made of piezoelectric polymer (polyvinylidene fluoride) strips molded in a silicon rubber and attached in a rigid cylinder body. The sensor is mounted to a scanning system for dynamic sensing. Secondly, a new signal processing algorithm is developed to restore surface information. The algorithm consists of the two-dimensional modeling of the sensor using an identification method and inverse filtering from sensing signals into estimated surface information. Finally the two-dimensional surface information can be experimentally reconstructed from sensing signals using the developed signal processing algorithm.

  • PDF

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

인공촉각과 피부를 위한 탄소나노튜브 기반 생체 모방형 신경 개발 (A Biomimetic Artificial Neuron Matrix System Based on Carbon Nanotubes for Tactile Sensing of e-Skin)

  • 김종민;김진호;차주영;김성용;강인필
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.188-192
    • /
    • 2012
  • In this study, a carbon nanotube (CNT) flexible strain sensor was fabricated with CNT based epoxy and rubber composites for tactile sensing. The flexible strain sensor can be fabricated as a long fibrous sensor and it also may be able to measure large deformation and contact information on a structure. The long and flexible sensor can be considered to be a continuous sensor like a dendrite of a neuron in the human body and we named the sensor as a biomimetic artificial neuron. For the application of the neuron in biomimetic engineering, an ANMS (Artificial Neuron Matrix System) was developed by means of the array of the neurons with a signal processing system. Moreover, a strain positioning algorithm was also developed to find localized tactile information of the ANMS with Labview for the application of an artificial e-skin.

유연한 구동기를 이용한 착용 가능한 촉각 제시 장치 개발 (Wearable Tactile Display Based on Soft Actuator)

  • 구익모;정광목;박종길;구자춘;이영관;남재도;최혁렬
    • 로봇학회논문지
    • /
    • 제1권1호
    • /
    • pp.89-101
    • /
    • 2006
  • Tactile sensation is one of the most important sensory functions for human perception of objects. Recently, there have been many technical challenges in the field of tactile display as well as tactile sensing. In this paper, we propose an innovative tactile display device based on soft actuator technology with ElectroActive Polymer(EAP). This device offers advantageous features over existing devices with respect to intrinsic flexibility, softness, ease of fabrication and miniaturization, high power density, and cost effectiveness. In particular, it can be adapted to various geometric configurations because it possesses structural flexibility, so it can be worn on any part of the human body such as finger, palm, and arm etc. It can be extensively applied as a wearable tactile display, a Braille device for the visually disabled, and a human interface in the future. A new design of the flexible actuator is proposed and its basic operational principles are discussed. In addition, a wearable tactile display device with $4{\times}5$ actuator array(20 actuator cells) is developed and its effectiveness is confirmed.

  • PDF

Development of Flexible Tactile Sensor Array

  • Kim, Hyungtae;Kwangmok Jung;Lee, Kyungsub;Jaedo Nam;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.97.6-97
    • /
    • 2002
  • In this paper, we present an arrayed flexible tactile sensor, which can detect contact normal forces as well as positions. The tactile sensor is developed using Polyvinylidene Fluoride (PVDF) that is known as piezoelectric polymer, and the surface electrode is fabricated using silk-screening technique with silver. We develop a charge amplifier in order to amplify the small signal from the sensor, and a fast signal processing unit by using a DSP chip. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In the future, the developed sensor is applied to a dexterous robotic hand...$\textbullet$ Tactile sensing, PVDF, Robot hand

  • PDF

분포형 유연촉각센서 (Distributed Flexible Tactile Sensor)

  • 유기호;윤명종
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.60-65
    • /
    • 2004
  • A flexible tactile sensor away with 8 H 8 tactile elements is designed and fabricated. The material of the sensor is PVDF(polyvinylidene fluoride) film and flexible circuitry is used in the fabrication fur the flexibility of the sensor The experimental results on static and dynamic properties of the sensor are obtained and examined. The signals of a contact pressure to the sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. The processed signals of the sensor outputs are visualized in a personal computer for illustrating the shape and force distribution of a contact object. The reasonable performance for the detection of contact state is verified through sensing examples.

컴퓨터게임과 가상현실을 위한 촉각 응용에 관한 연구 (A Study on Tactile Sensation Application for Computer Game and Virtual Reality)

  • 이영재
    • 한국멀티미디어학회논문지
    • /
    • 제5권6호
    • /
    • pp.646-654
    • /
    • 2002
  • 인간의 촉각감지 기능은 주위환경에 대한 중요한 정보를 제공하여 준다. 촉각 정보는 우리의 신체와 외부세계와의 접촉에 따른 위치 정보와 물체를 인지하고 조작하기 위한 감각적 정보 뿐 아니라 위험 여부까지 판단할 수 있는 정보를 제공해 준다. 그러나 촉각은 시각과 청각에 비해 상대적으로 덜 중요한 감각으로 인식되어져 왔으나, 가상현실과 컴퓨터 게임에 있어서는 중요한 역할을 수행할 수 있다. 촉각을 통해 플레이어가 가상 세계의 물체에게 직접 영향을 줄 수도 있고 받을 수도 있는 적극적인 인간 감각이기 때문이다. 본 논문에서는 인간의 촉각의 특성을 조사하고 이를 응용하기 위한 힘 감지 센서를 사용한 연구방법을 제시한다. 또한 실제적인 게임적용을 위하여 간단한 힘 모델링과 구조체 형식을 제안한다. 그 결과 센서 출력을 분석하여 힘의 분포, 크기, 중심을 구하고 이 정보를 응용하여 특정부위에 대한 작용, 반작용을 구현 할 수 있다. 본 결과는 컴퓨터 게임과 가상현실에서 촉각 감지와 응용을 위한 기본 자료로 활용될 수 있다.

  • PDF

폴리머 기반 슬림형 촉각센서의 최적 설계 및 새로운 공정 방법 (Polymer Based Slim Tactile Sensor: Optimal Design and New Fabrication Method)

  • 이정일;사토 카즈오
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.131-134
    • /
    • 2011
  • In this study, we propose an optimal design and new fabrication method for a slim tactile sensor. Slim tactile sensor can detect 3-axial forces and has suitable flexibility for intelligent robot fingers. To amplify the contact signal, a unique table-shaped structure was attempted. A new layer-by-layer fabrication process for polymer micromachining that can make a 3D structure by using a sacrificial layer was proposed. A table-shaped epoxy sensing plate with four legs was built on top of a flexible polymer substrate. The plate can convert an applied force to a concentrated stress. Normal and shear forces can be detected by combining responses from metal strain gauges embedded in the polymer substrate. The optimal positions of the strain gauges are determined using the strain distribution obtained from finite element analysis.

로봇 손의 인공 피부형 접촉 센서의 개발 (Development of a Tactile Array Sensor Layered in Artificial Skin for Robot Hand)

  • 임미섭;오상록;이종원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1272-1274
    • /
    • 1996
  • This paper presents the development of tactile sensor systems for robot hand which are truly usable, robust, reliable and cheap system. The sensor incorporates multiple sensing subsystems for detecting distributed contact forces and surface characteristics. The fabrication and experimental evaluation of the tactile system and its electric interfaces are described. The results indicate that the system provides reasonable performances for practical applications requiring manipulation with tactile feedback.

  • PDF

접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발 (Development of Tactile Sensor for Detecting Contact Force and Slip)

  • 최병준;강성철;최혁렬
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.