• Title/Summary/Keyword: Tactile Feedback

Search Result 76, Processing Time 0.028 seconds

Effect of Tactile Feedback for Button GUI on Mobile Touch Devices

  • Shin, Heesook;Lim, Jeong-Mook;Lee, Jong-Uk;Lee, Geehyuk;Kyung, Ki-Uk
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.979-987
    • /
    • 2014
  • This paper describes new tactile feedback patterns and the effect of their input performance for a button GUI activated by a tap gesture on mobile touch devices. Based on an analysis of touch interaction and informal user tests, several tactile feedback patterns were designed. Using these patterns, three user experiments were performed to investigate appropriate tactile feedback patterns and their input performance during interaction with a touch button. The results showed that a tactile pattern responding to each touch and release gesture with a rapid response time and short falling time provides the feeling of physically clicking a button. The suggested tactile feedback pattern has a significantly positive effect on the number of typing errors and typing task completion time compared to the performance when no feedback is provided.

The Effects of Visual and Tactile Feedback on Quadriceps Isometric Exercise (시·촉각 되먹임이 넙다리네갈래근 등척성 운동에 미치는 영향)

  • Lee, Su-Young;Jung, Young-Jong
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.27-34
    • /
    • 2001
  • Physical therapists have been using biofeedback training to induce improvements in various circumstances. The purpose of this study was to compare the effects of visual and tactile feedback using electrical stimulation on quadriceps strength. Nineteen women without known impairment of the neuromusculoskeletal system volunteered for this study. Subjects were randomly allocated into three groups: visual feedback, tactile feedback, and control group. The torque of isometric knee extension force was measured. Subjects were asked to exert the maximal isometric contraction force of quadriceps over a 30 second period. The resting period of 10 minutes was given after the maximal isometric contraction to avoid the muscle fatigue. In between groups comparison, significant differences of the peak torque and the torque area were found on the performance of the maximal isometric contraction of quadriceps (p<.05). The values peak of torque and torque area were significantly higher during visual feedback than tactile feedback. The results of this study suggest that visual feedback is more powerful than tactile feedback (p<.01).

  • PDF

Tactile feedback in tangible space

  • Yun, Seung-Kook;Kang, Sung-Chul;Yang, Gi-Hun;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1802-1807
    • /
    • 2005
  • Tangible interface can be understood as a newly defined concept, which can provide an effective and seamless interaction between the human as a subjective existence and the cyberspace as an objective existence. Tactile sensation is essential for many exploration and manipulation tasks in the tangible space. In this paper, we suggest the design of an integrated tactile sensor-display system that provides both of sensing and feedback with kinesthetic force, pressure distribution, vibration and slip/stretch. A new tactile sensor with PDVF strips and display system with bimorph actuators has been developed and integrated by developed signal processing algorithm. In the scenario of haptic navigation in the tangible space, tactile feedback system is successfully experimented.

  • PDF

Tactile feedback device using repulsive force of the magnets for teleoperation (자석의 반발력을 이용한 원격조종용 촉각궤환장치)

  • Ahn, Ihn-Seok;Moon, Yong-Mo;Lee, Jung-Hun;Park, Jong-Oh;Lee, Jong-Won;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-76
    • /
    • 1997
  • In this paper we developed a tactile feedback device using repulsive force of magnets. The force of the tactile feedback device was derived from the Maxwell's stress method by using the concept of magnetic charge. Magnetic repulsive force is linear function with respect to current and nonlinear to displacement. Experimental data shows these characteristics. To compensate the fact that the presented tactile feedback device can not be controlled by close loop control, we developed a simulation model which predicts output displacement and force by using Runge-Kutta method. And, this paper evaluated the presented tactile feedback device and compared it with commercial tactile feedback devices.

  • PDF

Study of Human Tactile Sensing Characteristics Using Tactile Display System (질감 제시 장치를 이용한 촉감인지 특성 연구)

  • Son Seung-Woo;Kyung Ki-Uk;Yang Gi-Hun;Kwon Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.451-456
    • /
    • 2005
  • This paper describes three kinds of experiments and analysis of their results related to human tactile sensitivity using an integrated tactile display system. The device can provide vibration, normal pressure and lateral slip/stretch which are important physical quantities to sense texture. We have tried to find out the efficient method of stimulating, limitation of surface discrimination by kinesthetic farce feedback and the effectiveness of the combination of kinesthetic force and tactile feedback. Seven kinds of different stimulating methods were carried out and they are single or combination of the kinesthetic force, normal static pressure, vibration, active/passive shear and moving wave. Both prototype specimen and stimulus using tactile display were provided to all examinees and they were allowed to answer the most similar sample. The experimental results show that static pressure is proper stimulus for the display of micro shape of the surface and vibrating stimulus is more effective for the display of fine surface. And the sensitivities of active touch and passive touch are compared. Since kinesthetic force feedback is appropriate to display shape and stiffness of an object, but roughness display has a limitation of resolution, the concurrent providing methods of kinesthetic and tactile feedback are applied to simulate physical properties during touching an object.

Development of an Integrated Mouse Type Tactile Display System (마우스형 통합 질감 제시 시스템 개발)

  • Kyung Ki-Uk;Son Seung-Woo;Yang Gi-Hun;Kim Munsang;Kwon Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.445-450
    • /
    • 2005
  • In this paper, we suggest an integrated tactile display system that provides kinesthetic force, pressure distribution, vibration and slip/stretch. The system consists of two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to the skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate the characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device, using eight piezoelectric bimorphs and a linear actuator, Is implemented and attached to a 2 DOF translational force feedback device to simultaneously simulate the texture and stiffness of the object. As a result, we find out that the capability of the suggested device is sufficient to display physical quantities to display the texture.

HASEL Actuator Study for Tactile Feedback Device (촉감 피드백을 위한 유압증폭자기치유형 정전식 액추에이터 연구 개발)

  • Song, Kahye
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2021
  • Attempts are being made to provide various tactile feedbacks to user. In particular, a variety of soft actuators are being inserted into the tactile feedback device to give a more flexible, soft and strong stimulation. In this study, a basic study was performed to utilize a hydraulically amplified self-healing electrostatic (HASEL) actuator as a tactile feedback actuator. The HASEL actuator showed great displacement and force with a simple circuit configuration. In particular, by making the actuator in a circular shape, the angle was reduced and the electrode was arranged in a ring shape to maximize the displacement of the central part. As a result, the HASEL actuator showed a displacement difference according to the input waveform. In addition, in order to use it safely as an actuator for tactile feedback, we covered the surface with silicone and confirmed that the actuator works well. Using these actuators, it will be possible to manufacture a lightweight, portable tactile feedback device.

A Conceptual Design of an Integrated Tactile Display Device

  • Son, Seung-Woo;Kyung, Ki-Uk;Yang, Gi-Hun;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2753-2758
    • /
    • 2003
  • Tactile sensation is essential for many manipulation and exploration tasks not only in a real environment but also in a virtual environment. In this paper, we discuss a conceptual design of an integrated tactile display system. The system comprises two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device is implemented using eight piezoelectric bimorphs and a linear actuator, and is attached to a 2 DOF translational force feedback device to simultaneously simulate texture and stiffness of the object.

  • PDF

Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing (촉각센싱기반 거칠고 젖은 표면 파지가 가능한 생체모사 로봇용 그리핑 기술 개발)

  • Kim, Da Wan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2022
  • High shear adhesion on wet and rough surfaces and tactile feedback of gripping forces are highly important for realizing robotic gripper systems. Here, we propose a bioinspired robotic gripper with highly shear adhesion and sensitive pressure sensor for tactile feedback systems. To achieve them, we fabricated multi-walled carbon nanotube sensing layer on a thin polymeric adhesive layer of polydimethylsiloxane. With densely hexagonal-packed microstructures, the pressure sensor achieved 9 times the sensing property of a sensor without microstructures. We then assembled hexagonal microstructures inspired by the toe pads of a tree frog, giving strong shear adhesion under both dry and wet surfaces such as silicon (42 kPa for dry and ~30 kPa for underwater conditions) without chemical-residues after detachment. Our robotic gripper can prevent damage to weak or smooth surfaces that can be damaged at low pressure through pressure signal feedback suggesting a variety of robotic applications.

Effect of Sensory Feedback Type on Correct Sitting Posture Learning on Healthy Adults (감각 되먹임 종류가 건강한 성인 남성의 올바른 앉은 자세 학습에 미치는 영향)

  • Shin, Ho-Jin;Kim, Sung-Hyeon;Cho, Hwi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.4
    • /
    • pp.125-137
    • /
    • 2021
  • PURPOSE: The growing number of people exposed to a static sitting posture has resulted in an increase in people with a poor posture out of the optimally aligned posture because of the low awareness of a correct sitting posture. Learning the correct sitting posture by applying sensory feedback is essential because a poor posture has negative consequences for the spine. Therefore, this study examined the effects of the sensory feedback types on learning correct sitting posture. METHODS: Thirty-six healthy adult males were assigned to a visual feedback group, a tactile feedback group, and a visuotactile feedback group to learn the correct sitting posture by applying sensory feedback. The spine angle, muscle activity, and muscle thickness were measured in the sitting position using retro-reflexive markers, electromyography, and ultrasound immediately after, five minutes, and 10 minutes after intervention. RESULTS: The intervention time was significantly shorter in the visuotactile feedback group than the visual feedback group (p < .05). Compared to the pre-intervention, the repositioning error angles of the thoracic and lumbar vertebrae of all groups were reduced significantly immediately after intervention and after five minutes. After 10 minutes, there was a significant difference in the thoracic and lumbar repositioning error angles of the tactile feedback group and the visuotactile feedback group (p < .05). No significant difference was noted at any time compared to the pre-intervention in all groups (p > .05). CONCLUSION: The use of tactile and visuotactile feedback in intervention to correct the sitting posture is proposed.