• 제목/요약/키워드: Tabular Data

검색결과 51건 처리시간 0.017초

Recent deep learning methods for tabular data

  • Yejin Hwang;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.215-226
    • /
    • 2023
  • Deep learning has made great strides in the field of unstructured data such as text, images, and audio. However, in the case of tabular data analysis, machine learning algorithms such as ensemble methods are still better than deep learning. To keep up with the performance of machine learning algorithms with good predictive power, several deep learning methods for tabular data have been proposed recently. In this paper, we review the latest deep learning models for tabular data and compare the performances of these models using several datasets. In addition, we also compare the latest boosting methods to these deep learning methods and suggest the guidelines to the users, who analyze tabular datasets. In regression, machine learning methods are better than deep learning methods. But for the classification problems, deep learning methods perform better than the machine learning methods in some cases.

Incorporating BERT-based NLP and Transformer for An Ensemble Model and its Application to Personal Credit Prediction

  • Sophot Ky;Ju-Hong Lee;Kwangtek Na
    • 스마트미디어저널
    • /
    • 제13권4호
    • /
    • pp.9-15
    • /
    • 2024
  • Tree-based algorithms have been the dominant methods used build a prediction model for tabular data. This also includes personal credit data. However, they are limited to compatibility with categorical and numerical data only, and also do not capture information of the relationship between other features. In this work, we proposed an ensemble model using the Transformer architecture that includes text features and harness the self-attention mechanism to tackle the feature relationships limitation. We describe a text formatter module, that converts the original tabular data into sentence data that is fed into FinBERT along with other text features. Furthermore, we employed FT-Transformer that train with the original tabular data. We evaluate this multi-modal approach with two popular tree-based algorithms known as, Random Forest and Extreme Gradient Boosting, XGBoost and TabTransformer. Our proposed method shows superior Default Recall, F1 score and AUC results across two public data sets. Our results are significant for financial institutions to reduce the risk of financial loss regarding defaulters.

고차원 매핑기법과 딥러닝 네트워크를 통한 정형데이터의 분류 (Classification of Tabular Data using High-Dimensional Mapping and Deep Learning Network)

  • 김경택;장원두
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.119-124
    • /
    • 2023
  • 최근 딥러닝은 다양한 분야에서 전통적인 기계학습에 비해 월등히 높은 성능을 보이고 있으며, 패턴인식을 위한 보편적인 방법으로 자리 잡아 가고 있다. 하지만, 이에 비해 정형데이터를 사용하는 분류 문제에서는 여전히 머신러닝 기법이 주류를 이루고 있다. 본 논문에서는 정형데이터를 고차원 텐서로 변환하는 네트워크 모듈을 제안하며, 이 모듈을 보편적인 딥러닝 네트워크와 함께 구성하여 정형데이터의 분류 문제에 적용하였다. 제안된 방법은 4종의 데이터셋을 활용하여 학습 및 검증되었으며, 제안된 방법은 90.22%의 평균 정확도를 달성하여, 최신 딥러닝 모델인 TabNet에 비해 2.55%p 높은 정확도를 보였다. 제안된 방법은 컴퓨터 비전 분야에서 높은 성능을 보이는 다양한 네트워크 구조를 정형데이터에 활용할 수 있다는 점에서 의미가 있다.

표 기계독해 언어 모형의 의미 검증을 위한 테스트 데이터셋 (Test Dataset for validating the meaning of Table Machine Reading Language Model)

  • 유재민;조상현;권혁철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.164-167
    • /
    • 2022
  • 표 기계독해에서는 도메인에 따라 언어모형에 필요한 지식이나 표의 구조적인 형태가 변화하면서 텍스트 데이터에 비해서 더 큰 성능 하락을 보인다. 본 논문에서는 표 기계독해에서 이러한 도메인의 변화에 강건한 사전학습 표 언어 모형 구축을 위한 의미있는 표 데이터 선별을 통한 사전학습 데이터 구축 방법과 적대적인 학습 방법을 제안한다. 추출한 표 데이터에서 구조적인 정보가 없이 웹 문서의 장식을 위해 사용되는 표 데이터 검출을 위해 Heuristic을 통한 규칙을 정의하여 HEAD 데이터를 식별하고 표 데이터를 선별하는 방법을 적용했으며, 구조적인 정보를 가지는 일반적인 표 데이터와 엔티티에 대한 지식 정보를 가지는 인포박스 데이터간의 적대적 학습 방법을 적용했다. 기존의 정제되지 않는 데이터로 학습했을 때와 비교하여 데이터를 정제하였을 때, KorQuAD 표 데이터에서 F1 3.45, EM 4.14가 증가하였으며, Spec 표 질의응답 데이터에서 정제하지 않았을 때와 비교하여 F1 19.38, EM 4.22가 증가한 성능을 보였다.

  • PDF

Korean TableQA: Structured data question answering based on span prediction style with S3-NET

  • Park, Cheoneum;Kim, Myungji;Park, Soyoon;Lim, Seungyoung;Lee, Jooyoul;Lee, Changki
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.899-911
    • /
    • 2020
  • The data in tables are accurate and rich in information, which facilitates the performance of information extraction and question answering (QA) tasks. TableQA, which is based on tables, solves problems by understanding the table structure and searching for answers to questions. In this paper, we introduce both novice and intermediate Korean TableQA tasks that involve deducing the answer to a question from structured tabular data and using it to build a question answering pair. To solve Korean TableQA tasks, we use S3-NET, which has shown a good performance in machine reading comprehension (MRC), and propose a method of converting structured tabular data into a record format suitable for MRC. Our experimental results show that the proposed method outperforms a baseline in both the novice task (exact match (EM) 96.48% and F1 97.06%) and intermediate task (EM 99.30% and F1 99.55%).

Investigations into Coarsening Continuous Variables

  • Jeong, Dong-Myeong;Kim, Jay-J.
    • 응용통계연구
    • /
    • 제23권2호
    • /
    • pp.325-333
    • /
    • 2010
  • Protection against disclosure of survey respondents' identifiable and/or sensitive information is a prerequisite for statistical agencies that release microdata files from their sample surveys. Coarsening is one of popular methods for protecting the confidentiality of the data. Grouped data can be released in the form of microdata or tabular data. Instead of releasing the data in a tabular form only, having microdata available to the public with interval codes with their representative values greatly enhances the utility of the data. It allows the researchers to compute covariance between the variables and build statistical models or to run a variety of statistical tests on the data. It may be conjectured that the variance of the interval data is lower that of the ungrouped data in the sense that the coarsened data do not have the within interval variance. This conjecture will be investigated using the uniform and triangular distributions. Traditionally, midpoint is used to represent all the values in an interval. This approach implicitly assumes that the data is uniformly distributed within each interval. However, this assumption may not hold, especially in the last interval of the economic data. In this paper, we will use three distributional assumptions - uniform, Pareto and lognormal distribution - in the last interval and use either midpoint or median for other intervals for wage and food costs of the Statistics Korea's 2006 Household Income and Expenditure Survey(HIES) data and compare these approaches in terms of the first two moments.

데이터 구성에 따른 하천 조류 예측 딥러닝 모형 (TabPFN) 성능 비교 (Comparing the Performance of a Deep Learning Model (TabPFN) for Predicting River Algal Blooms with Varying Data Composition)

  • 양현석;박정수
    • 한국습지학회지
    • /
    • 제26권3호
    • /
    • pp.197-203
    • /
    • 2024
  • 하천에서 조류의 과다 발생은 취수원 관리 및 정수 처리에 악영향을 줄 수 있어 지속적인 관리가 필요하다. 본 연구에서는 딥러닝 알고리즘 중 작은 규모의 테이블 데이터에서도 상대적으로 우수한 성능을 보이는 것으로 알려진 tabular prior data fitted networks (TabPFN)을 사용하여 조류 발생 지표 중 하나인 chlorophyll-a (chl-a) 농도를 예측하는 다중 분류 모형을 구축하였다. 모형의 구축을 위해 부여지점 수질자동측정망에서 2014년 1월 1일부터 2022년 12월 31일까지 측정된 일일측정자료를 사용하였으며 입력 자료의 크기가 모형의 성능에 미치는 영향을 확인하기 위해 입력 자료의 평균값을 이용하여 1일, 3일, 6일, 12일의 측정 주기를 가진 입력 자료를 구성하였다. 각 모형의 성능을 비교한 결과 측정 주기가 길어져 입력 자료의 규모가 작은 경우에도 모형이 안정적인 성능을 보이는 것을 확인하였다. 각 모형의 macro average는 precision이 0.77, 0.76, 0.83, 0.84였으며, recall은 0.63, 0.65, 0.66, 0.74 F1-score는 0.67, 0.69, 0.71, 0.78로 분석되었다. Weighted average는 precision이 0.76, 0.77, 0.81, 0.84이며 recall은 0.76, 0.78, 0.81, 0.85 F1-score는 0.74, 0.77, 0.80, 0.84로 분석되었다. 본 연구에서는 TabPFN을 이용하여 구축한 chl-a 예측 모형이 작은 규모의 입력 자료에서도 안정적인 성능을 보이는 것을 확인하여 모형구축에 필요한 입력 자료가 제한적인 현장에서의 적용 가능성을 확인하였다.

데이터 로딩 자동화를 위한 RESTful 웹서비스 개발 - 일별 기상자료 처리를 중심으로 - (Development of RESTful Web Service for Loading Data focusing on Daily Meteorological Data)

  • 김태곤;이정재;남원호;서교
    • 한국농공학회논문집
    • /
    • 제56권6호
    • /
    • pp.93-102
    • /
    • 2014
  • Generally data loading is a laborous job to develop models. Meteorological data is basic input data for hydrological models, it is provided through websites of Korea Meteorological Administration (KMA). The website of KMA provides daily meteorological observation data with tabular format classified by years, items, stations. It is cumbersome to manipulate tabular format for model inputs such as time series and multi-item or multi-station data. The provider oriented services which broadcast restricted formed information have caused inconvenient processes. Tim O'Reilly introduces "Web 2.0" which focuses on providing a service based on data. The top ranked IT companies such as google, yahoo, daum, and naver provide customer oriented services with Open API (Application Programming Interface). A RESTful web service, typical implementation for Open API, consists URI request and HTTP response which are simple and light weight protocol than SOAP (Simple Object Access Protocol). The aim of this study is to develop a web-based service that helps loading data for human use instead of machine use. In this study, the developed RESTful web service provides Open API for manipulating meteorological data. The proposed Open API can easily access from spreadsheet programs, web browsers, and various programming environments.

Study of oversampling algorithms for soil classifications by field velocity resistivity probe

  • Lee, Jong-Sub;Park, Junghee;Kim, Jongchan;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.247-258
    • /
    • 2022
  • A field velocity resistivity probe (FVRP) can measure compressional waves, shear waves and electrical resistivity in boreholes. The objective of this study is to perform the soil classification through a machine learning technique through elastic wave velocity and electrical resistivity measured by FVRP. Field and laboratory tests are performed, and the measured values are used as input variables to classify silt sand, sand, silty clay, and clay-sand mixture layers. The accuracy of k-nearest neighbors (KNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM), selected to perform classification and optimize the hyperparameters, is evaluated. The accuracies are calculated as 0.76, 0.91, 0.94, and 0.88 for KNN, NB, RF, and SVM algorithms, respectively. To increase the amount of data at each soil layer, the synthetic minority oversampling technique (SMOTE) and conditional tabular generative adversarial network (CTGAN) are applied to overcome imbalance in the dataset. The CTGAN provides improved accuracy in the KNN, NB, RF and SVM algorithms. The results demonstrate that the measured values by FVRP can classify soil layers through three kinds of data with machine learning algorithms.

기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구 (Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset)

  • 성주형;권기원;박경원;송병철
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.121-130
    • /
    • 2024
  • 정보 통신 기술의 기하급수적인 발전에 따라 확보 가능한 데이터의 종류와 크기가 증가하고 있다. 이러한 대량의 데이터를 활용하기 위해, 통계 등 확보한 데이터를 분석하는 것이 중요하지만 다양화되고 복잡도가 증가한 데이터를 일반적인 방법으로 처리하는 것에는 명확한 한계가 있다. 한편, 연산 처리 능력 고도화 및 자동화 시스템에 대한 수요 증가에 따라 다양한 분야에 기계 학습을 적용하여 그동안 해결하지 못하였던 문제들을 풀고자 하는 시도가 증가하고 있다. 기계 학습 모델의 성능을 확보하기 위해서 모델의 입력에 사용되는 데이터를 가공하는 것과 해결하고자 하는 목적 함수에 따라 모델을 설계하는 것이 중요하다. 많은 연구를 통해 데이터의 종류 및 특성에 따라 데이터를 처리하는 방법이 제시되었으며, 그 방법에 따라 기계 학습의 성능에는 큰 차이가 나타난다. 그럼에도 불구하고, 데이터의 종류와 특성이 다양해짐에 따라 데이터 분석을 위하여 어떠한 데이터 처리 방법을 적용해야 하는지에 대한 어려움이 존재한다. 특히, 기계 학습을 이용하여 비선형적 문제를 해결하기 위해서는 다변량 데이터를 처리하는 것이 필수적이다. 본 논문에서는 다양한 형태의 변수를 포함하는 Kaggle의 Titanic 데이터셋을 이용하여 기계 학습 기반으로 데이터 분석을 수행하기 위한 다변량 정형 (tabular) 데이터 처리 방법에 대해 제시한다. 데이터 특성에 따른 통계 분석을 적용한 입력 변수 필터링, 데이터 정규화 등의 처리 방법을 제안하고, 데이터 시각화를 통해 데이터 구조를 분석한다. 마지막으로, 기계 학습 모델을 설계하고, 제안하는 다변량 데이터 처리를 적용하여 모델을 훈련시킨다. 그 이후, 훈련된 모델을 사용하여 탑승객의 생존 여부 예측 성능을 분석한다. 본 논문에서 제시하는 다변량 데이터 처리와 시각화를 적용하여 다양한 환경에서 기계 학습 기반 분석에 확장할 수 있을 것으로 기대한다.