• Title/Summary/Keyword: Tabu-Genetic Algorithm

Search Result 70, Processing Time 0.027 seconds

A service Restoration and Optimal Reconfiguration of Distribution Network Using Genetic Algorithm and Tabu Search (유전 알고리즘과 Tabu Search를 이용한 배전계통 사고복구 및 최적 재구성)

  • Cho, Chul-Hee;Shin, Dong-Joon;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.2
    • /
    • pp.76-82
    • /
    • 2001
  • This paper presents a approach for a service restoration and optimal reconfiguration of distribution network using Genetic algorithm(GA) and Tabu search(TS) method. Restoration and reconfiguration problems in distribution network are difficult to solve in short times, because distribution network supplies power for customers combined with many tie-line switches and sectionalizing switches. Furthermore, the solutions of these problems have to satisfy radial operation conditions and reliability indices. To overcome these time consuming and sub-optimal problem characteristics, this paper applied Genetic-Tabu algorithm. The Genetic-Tabu algorithm is a Tabu search combined with Genetic algorithm to complement the weak points of each algorithm. The case studies with 7 bus distribution network showed that not the loss reduction but also the reliability cost should be considered to achieve the economic service restoration and reconfiguration in the distribution network. The results of suggested Genetic-Tabu algorithm and simple Genetic algorithm are compared in the case study also.

  • PDF

Optimum Allocation of Pipe Support Using Combined Optimization Algorithm by Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치)

  • 양보석;최병근;전상범;김동조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.71-79
    • /
    • 1998
  • This paper introduces a new optimization algorithm which is combined with genetic algorithm and random tabu search method. Genetic algorithm is a random search algorithm which can find the global optimum without converging local optimum. And tabu search method is a very fast search method in convergent speed. The optimizing ability and convergent characteristics of a new combined optimization algorithm is identified by using a test function which have many local optimums and an optimum allocation of pipe support. The caculation results are compared with the existing genetic algorithm.

  • PDF

Ooptimum Design Damping Plate by Combined Method of Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Tabu탐색법에 의한 제진판의 최적설계)

  • 양보석;전상범;유영훈;최병근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.184-189
    • /
    • 1997
  • This paper introduces a new combined method by genetic algorithm and random tabu search method as optimization algorithm. Genetic algorithm can search the global optimum and tabu search method is very fast in speed. The optimizing ability of new combined method is identified by comparing other optimizing algorithm and used for optimum design of damping plate.

  • PDF

A new approach for k-anonymity based on tabu search and genetic algorithm

  • Run, Cui;Kim, Hyoung-Joong;Lee, Dal-Ho
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.4
    • /
    • pp.128-134
    • /
    • 2011
  • Note that k-anonymity algorithm has been widely discussed in the area of privacy protection. In this paper, a new search algorithm to achieve k-anonymity for database application is introduced. A lattice is introduced to form a solution space for a k-anonymity problem and then a hybrid search method composed of tabu search and genetic algorithm is proposed. In this algorithm, the tabu search plays the role of mutation in the genetic algorithm. The hybrid method with independent tabu search and genetic algorithm is compared, and the hybrid approach performs the best in average case.

  • PDF

Scheduling of a Flow Shop with Setup Time (Setup 시간을 고려한 Flow Shop Scheduling)

  • Kang, Mu-Jin;Kim, Byung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.797-802
    • /
    • 2000
  • Flow shop scheduling problem involves processing several jobs on common facilities where a setup time Is incurred whenever there is a switch of jobs. Practical aspect of scheduling focuses on finding a near-optimum solution within a feasible time rather than striving for a global optimum. In this paper, a hybrid meta-heuristic method called tabu-genetic algorithm(TGA) is suggested, which combines the genetic algorithm(GA) with tabu list. The experiment shows that the proposed TGA can reach the optimum solution with higher probability than GA or SA(Simulated Annealing) in less time than TS(Tabu Search). It also shows that consideration of setup time becomes more important as the ratio of setup time to processing time increases.

  • PDF

Optimum Design of the Spatial Structures using the TABU Algorithm (TABU 알고리즘을 이용한 대공간 구조물의 최적설계)

  • Cho, Yong-Won;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.246-253
    • /
    • 2005
  • The design of structural engineering optimization is to minimize the cost. This problem has many objective functions formulating section and shape as a function of the included discrete variables. simulated annealing, genetic algerian and TABU algorithm are searching methods for optimum values. The object of this reserch is comparing the result of TABU algorithm, and verifying the efficiency of TABU algorithm in structural optimization design field. For the purpose, this study used a solid truss of 25 elements having 10 nodes, and size optimization for each constraint and load condition of Geodesic one, and shape optimization of Cable Dome for verifying spatial structures by the application of TABU algorithm

  • PDF

Performance comparison of Tabu search and genetic algorithm for cell planning of 5G cellular network (5G 이동통신 셀 설계를 위한 타부 탐색과 유전 알고리즘의 성능)

  • Kwon, Ohyun;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.65-73
    • /
    • 2017
  • The fifth generation(5G) of wireless networks will connect not only smart phone but also unimaginable things. Therefore, 5G cellular network is facing the soaring traffic demand of numerous user devices. To solve this problem, a huge amount of 5G base stations will need to be installed. The base station positioning problem is an NP-hard problem that does not know how long it will take to solve the problem. Because, it can not find an answer other than to check the number of all cases. In this paper, to solve the NP hard problem, we compare the tabu search and the genetic algorithm using real maps for optimal cell planning. We also perform Monte Carlo simulations to study the performance of the Tabu search and Genetic algorithm for 5G cell planning. As a results, Tabu search required 2.95 times less computation time than Genetic algorithm and showed accuracy difference of 2dBm.

The Comparison of Neural Network Learning Paradigms: Backpropagation, Simulated Annealing, Genetic Algorithm, and Tabu Search

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.696-704
    • /
    • 1998
  • Artificial neural networks (ANN) have successfully applied into various areas. But, How to effectively established network is the one of the critical problem. This study will focus on this problem and try to extensively study. Firstly, four different learning algorithms ANNs were constructed. The learning algorithms include backpropagation, simulated annealing, genetic algorithm, and tabu search. The experimental results of the above four different learning algorithms were tested by statistical analysis. The training RMS, training time, and testing RMS were used as the comparison criteria.

  • PDF

Structural Optimization Using Tabu Search in Discrete Design Space (타부탐색을 이용한 이산설계공간에서의 구조물의 최적설계)

  • Lee, Kwon-Hee;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.798-806
    • /
    • 2003
  • Structural optimization has been carried out in continuous or discrete design space. Methods for continuous design have been well developed though they are finding the local optima. On the contrary, the existing methods for discrete design are extremely expensive in computational cost or not robust. In this research, an algorithm using tabu search is developed fur the discrete structural designs. The tabu list and the neighbor function of the Tabu concepts are introduced to the algorithm. It defines the number of steps, the maximum number for random searches and the stop criteria. A tabu search is known as the heuristic approach while genetic algorithm and simulated annealing algorithm are attributed to the stochastic approach. It is shown that an algorithm using the tabu search with random moves has an advantage of discrete design. Furthermore, the suggested method finds the reliable optimum for the discrete design problems. The existing tabu search methods are reviewed. Subsequently, the suggested method is explained. The mathematical problems and structural design problems are investigated to show the validity of the proposed method. The results of the structural designs are compared with those from a genetic algorithm and an orthogonal array design.

PC Cluster Based Parallel Genetic Algorithm-Tabu Search for Service Restoration of Distribution Systems (PC 클러스터 기반 병렬 유전 알고리즘-타부 탐색을 이용한 배전계통 고장 복구)

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.375-387
    • /
    • 2005
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search (GA-TS) algorithm to search an optimal solution of a service restoration in distribution systems. The main objective of service restoration of distribution systems is, when a fault or overload occurs, to restore as much load as possible by transferring the do-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints, which is a combinatorial optimization problem. This problem has many constraints with many local minima to solve the optimal switch position. This paper develops parallel GA-TS algorithm for service restoration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solutions of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper $10\%$ of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC cluster system consists of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through ethernet switch based fast ethernet. To show the validity of the proposed method, proposed algorithm has been tested with a practical distribution system in Korea. From the simulation results, we can find that the proposed algorithm is efficient for the distribution system service restoration in terms of the solution quality, speedup, efficiency and computation time.