• Title/Summary/Keyword: TWISTING

Search Result 462, Processing Time 0.033 seconds

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.

Incremental Twisting Compensator for Performance Improvement of Helicopter Control (헬리콥터 제어 성능 개선을 위한 증분 트위스팅 보상기)

  • Seo, Gang-Ho;Ju, Jongin;Kim, Yoonsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • In this paper, an incremental twisting compensator is proposed for improving the performance of helicopter control and tested on an in-house full-scale helicopter simulator. The proposed compensator has a merit in that an incremental control input (a second-order sliding mode control input or so-called twisting control input) is simply added to improve the performance of helicopter control, while the original flight control structure remains untouched. The proposed control technique has been shown to improve the transient and steady-state response of the in-house helicopter simulator.

Evaluation of the Pushing, Lifting and Twisting Forces According to the Handle Design Variables of the Single-Wheel Barrows (외륜 수레 손잡이 설계 변수의 변화에 따른 밀기, 들기, 회전 힘 평가)

  • Song, Young-Woong;Kim, Kyoung-Ah;Lee, Ho-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.84-91
    • /
    • 2012
  • This study evaluated three forces (lifting, pushing and twisting) required to maneuver the single-wheel barrows according to handle height, width, horizontal angle and vertical angle. The four independent variables were varied in two levels. Handle height was varies in two levels : 'knuckle height (KH)' and 'KH + 0.1 ${\times}$ stature'. The two handle widths were '1.5 ${\times}$ shoulder width (SW)' and '1.75 ${\times}$ SW'. Two angles of $0^{\circ}$ and $15^{\circ}$ were used for horizontal and vertical angles. The 24 factorial design was used in the experiment. Twelve healthy male students (undergraduate and graduate) participated in the experiment. Subjects exerted three forces (pushing, lifting, and twisting clockwise) in each experimental condition. The order of 16 treatment conditions was determined randomly. Results showed that the effects of the four factors were different according to three forces. While lifting and twisting forces were higher in 'knuckle height', the pushing force was higher in 'KH + 0.1 ${\times}$ stature' (p < 0.05). Lifting and pushing forces showed higher values in the horizontal angle $0^{\circ}$ than in $15^{\circ}$. Handle width and vertical angle showed no statistically significant main effects on three forces (p > 0.05). Results of this study could be used as basic data for the ergonomic design of handle variables of one- or two-wheel barrows.

The Bending and Twisting Analysis of SMA/Composite Beams (SMA 선이 삽입된 복합재 보의 굽힘 및 비틀림 해석)

  • Park, Bum-Sik;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.151-154
    • /
    • 2001
  • Shape memory alloy (SMA) has demonstrated its potentials for various smart structure applications. SMA wires undergo a reversible phase transformation from martensite to austenite as temperature increases. This transformation leads to shape recovery and associated recovery strains. If SMA actuators are embedded off the neutral surface and are oriented in arbitrary angles with respect to a beam axis, then the beam bends and twists due to the coupling effects of recovery strains activated. In this study, the bending and twisting of a SMA/Composite beam were controlled by both electric resistive heating and passive elastic tailoring. 3-dimensional finite element formulations were derived and validated to analyze the responses of the SMA/Composite beam. Numerical results show that the shape of the SMA/Composite beam can be controlled by judicious choices of control temperatures, SMA angles, and elastic tailoring.

  • PDF

Analysis of functional roles of ten trunk muscles in voluntary isometric exertion tasks (자의적 등척성 작업에서 몸통 근육의 기능적 발휘 형태 분석)

  • Song, Yeong-Ung;Jeong, Min-Geun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.47-57
    • /
    • 2003
  • This study investigated the recruitment patterns of ten trunk muscles in isometric exertion tasks, focused on the functional roles (agonist or antagonist). Twelve male students performed maximum voluntary isometric exertion tasks towards six directions: flexion/extension, left/right lateral bending, and clockwise/counter-clockwise twisting. EMG signals from ten trunk muscles and exertion forces were collected. Normalized EMG (NEMG) values were calculated at 10, 20, 30, 40, 50, 60, 70, 80, and 90 %MVC. The subjects showed a limited capacity in producing twisting moments, approximately 50% of the extension moment, and 70% of lateral bending moments. EMG activity was dependent on the direction and magnitude of the exertion, and also on the functional role. The mean NEMG of agonist was 0.260 and 0.067 for antagonist. Agonists showed the highest mean NEMG in flexion (0.367), while antagonists showed the highest mean NEMG in twisting clockwise/counter-clockwise (0.090/0.106).

Influence of twisting angle between contacts on arc behavior in spiral type vacuum interrupter (나선형 구조의 VI 전극간의 비틀림 각도가 아크거동에 미치는 영향)

  • Kim, Byoung-Chul;Park, Jong-Bae;Park, Hong-Tae;Kang, Sung-Wha;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.373-375
    • /
    • 2008
  • In this paper the arc behavior in spiral type vacuum interrupter was analyzed by observing taken photographs from high-speed digital camera(10000frame/second) and current-voltage waveform from oscilloscope. As a result, the influence of twisting angle between contacts on arc behavior could be analyzed by matching and comparing arc voltage and photographs simultaneously.

  • PDF

An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of S shape from Round Billet (상계해법에의한 원형빌렛으로부터 S형 단며의 압출가공의 비틀림 해석)

  • 진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.130-135
    • /
    • 1997
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by longitudinal distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product changes with the aspect ratio of product and increases with the decreases in die length and in eccentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

A Study of fabrication and microstructural evolution of twisted BSCCO superconductor tape (Twisting된 BSCCO 선재 제조 및 미세조직 연구)

  • 임준형;지봉기;박형상;주진호;장미혜;고태국;이상진;하홍수;오상수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.112-114
    • /
    • 2000
  • We fabricated BSCCO multifilaments superconductor tape and evaluated the effect of twisting on the microstructural evolution and critical current. Twist pitches of the tapes are in the range of 70 - 8 mm and uniformly deformed. It was observed that grain size and the degree of texture decreased as decreasing pith, probably due to the formation of the irregular interface between Ag and filaments. In addition, critical current of the tapes decreased to 6.5A with decreasing pitch to 8 mm, showing 48% of degradation compared to the untwisted tape(12.5 A). These reduction of critical current may be related to the interface irregularity, smaller grain size, worse texture and the presence of cracks due to the induced strain during twisting processing.

  • PDF

Evaluation of Twisting Deformation of the Door Frame of a Microwave Oven by Transient Response Analysis (과도응답 해석에 의한 전자레인지 도어 프레임의 비틀림 변형 평가)

  • Koo, Jin-Young;Lee, Boo-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1282-1288
    • /
    • 2005
  • This research has been motivated by the need to minimize possible leakage of microwave when one opens the door during operation of the microwave oven. An explicit finite element program is used to analyze the transient response the door of the oven under door-opening condition. Operation of the micro switch which plays an important role to hun off the power is simulated on the basis of the response of the latch. Using the results of the analysis, twisting deformation of the door frame is defined and evaluated.

Image Noise Reduction Using Structural Mode Shaping for Scanning Electron Microscopy

  • Hamochi, Mitsuru;Wakui, Shinji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • In a scanning electron microscope (SEM), outside acoustic noise causes image noise that distorts observations of the specimen being examined. A SEM that is less sensitive to acoustic noise is highly desirable. This paper investigates the image noise problem by addressing the mode shapes of the base plate and the transmission path of the acoustic noise and vibration. By arranging the position of the rib, a new SEM base plate was developed that had twisting as the 1st and 2nd modes. In those two twisting modes, vibration nodes existed near the center of the base plate where the specimen chamber is placed. Less vibration was transmitted to the chamber and to the specimen by the twisting modes compared to bending ones, which are the 2nd and 3rd modes for a rectangular plain base plate. An SEM with the developed base plate installed exhibited a significant reduction of image noise when exposed to acoustic noises below 250 Hz.