• Title/Summary/Keyword: TVOCs

Search Result 56, Processing Time 0.032 seconds

Assessment of Indoor Air Quality of Classroom in School by Means of Source Generation - Case Study (발생원에 따른 일부 학교 교실의 실내공기질 평가 사례연구)

  • Yang Won-Ho;Byeon Jae-Cheol;Kim Young-Hee;Kim Dae-Won;Son Bu-Soon;Lee Jung-Eun
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.979-983
    • /
    • 2005
  • Indoor air quality has been addressed as an important atmospheric environmental issue and has caught attention of the public in recent years in Korea. Good indoor air quality in classrooms favour student's learning ability, teacher and staff's productivity according to other studies. In this study, each classroom at four different schools was chosen for comparison of indoor and outdoor air quality by means of source generation types such as new constructed classroom, using of cleaning agents and purchased furniture. Temperature, relative humidity (RH), carbon dioxide $(CO_2)$, formaldehyde (HCHO), total volatile organic compounds (TVOCs) and particulate matter with diameter less than $10{\mu}m\;(PM_{10})$ were monitored at indoor and outdoor locations during lesson. HCHO was found to be the worst among parameters measured in new constructed classroom, HCHO and TVOCs was worst in classroom with new purchased furniture, and TVOCs was worst in classroom cleaned by cleaning agents, Indoor $(CO_2)$ concentrations often exceeded 1500 ppm indicating importance of ventilation. Active activity of students during break time made the $PM_{10}$ concentration higher than a lesson, Improvements and further researches should be carried out considering indoor air quality at schools is of special concern since children and students are susceptible to poor air quality.

Assessment of hazardous substances and workenvironment for cleanrooms of microelectronic industry (전자산업 청정실의 작업환경 및 유해물질농도 평가)

  • Chung, Eun-Kyo;Park, Hyun-Hee;Shin, Jung-Ah;Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.280-287
    • /
    • 2009
  • High-tech microelectronics industry is known as one of the most chemical-intensive industries. In Korea, Microelectronics industry occupied 38% of export and 16% of working employees work in microelectronics industry. But, chemical information and health hazards of high-tech microelectronics manufacturing are poorly understood because of rapid development and its penchant for secrecy. We need to investigate on chemical use and exposure control. We Site-visits to 6 high-tech microelectronics manufacturing company which have cleanroom work using over 1,000kg organic solvents (5 semi-conductor chips and its related parts company, 1 liquid crystal display (LCD)). We reviewed their data on chemical use and ventilation system, and measured TVOCs (Total Volatile Organic Compounds) and carbon dioxide concentration. All cleanroom air passed through hepa filters to acheive low particle levels and only 1 cleanroom uses carbon filters to minimize the organic solvents exposures In TVOC screening test, Cleanroom for semi-conductor chips and its related parts company with laminar down flow system (e.g. class 1~100) showed nondetectable level of TVOCs concentration, but Cleanroom for liquid crystal display (LCD) with conventional flow system (e.g. class 1,000~10,000) showed 327 ppm as TVOCs. Acetone concentration in cleanroom for Jig cleaning, LC Injection, Sealing processes were 18.488ppm (n=14), 49.762 ppm (n=15), 8.656 ppm (n=14) as arithmetric mean. Acetone concentration in cleanroom for LCD inspection process was 40ppm (n=55) as geometric mean, where the range was 7.8~128.7ppm and weakly correlated with ventilation rate efficiency(r=0.44, p<0.05). To control organic solvents in cleanrooms, chemical and carbon filters should be installed with hepa filters. Even though their volatile organic compounds concentration was not exceed to occupational exposure limits, considering of entrance limited cleanroom environment, long-term period exposure effects and adverse health effects of cleanroom worker need further reseach.

The Assessment of Survey on the Indoor Air Quality at Schools in Korea (국내 일부학교 건축물의 실내공기질 평가)

  • Sohn Jong-Ryeul;Roh Young-Man;Son Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.140-148
    • /
    • 2006
  • Recently, indoor air quality (IAQ) in workplace, residential environments and schools has been concerned of people, scientists and related the public, and has recognized the health effects related to indoor air pollution. Therefore, this study was performed to investigate the characteristics of IAQ in 55 kindergartens, elementary school, middle schools, and high schools from June, 2004 to May, 2005 in Korea. We measured indoor air pollutants($PM_{10},\;CO_2$, HCHO, total bacteria colony(TBC), CO, radon, TVOCs, asbestos, and $O_3$), and physical factors(noise, temperature, relative humidity, and illumination) with necessary of management for IAQ in school. We classified into 5 kinds of the school by period since building completion, <1 year, 1-3 years, 3-5 years, and 5-10 years. The concentration of pollutants and the level of physical factors compared with standards and guidelines of IAQ on the Ministry of Environment, the Ministry of Health and Welfare, and the Ministry of Education and Human Resources Development. The major results obtained from this study were as follows. Temperature, relative humidity and illumination among the physical factors did not exceed the standards, but noise exceeded it. Asbestos and $O_3$ did not detect in surveyed classrooms. CO, TBC, TVOCs, and HCHO in kindergartens, TBC in elementary schools, TBC, TVOCs dnd HCHO in middle schools, and HCHO in high schools detected the standards. This study is conducted as a part of efforts to provide a foundational data for further relative researches on management of IAQ of school. Therefore, we suggest that country plan for management of IAQ in school should be established through long-term and continuous investigation for assessment on IAQ in school and health risk assessment for students.

Development of Source Profiles and Estimation of Source Contribution for Hazardous Air Pollutants by the Principal Component Analysis in Indoor Air

  • Kim, Yoon-Shin;Hong, Seoung-Cheol;Lee, Cheol-Min;Kim, Jong-Cheol;Jeon, Hyung-Jin;Song, Kyoung-Min;Roh, Young-Man
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.254-258
    • /
    • 2005
  • The purpose of this study is to characterize the indoor-outdoor relationship of airborne pollutants and recognize probable sources in inside and outside individual apartments in Seoul metropolitan. Simultaneous air monitoring in inside and outside of the 16 Korean Apartments classified into 2groups: less than 1 year old and more than 4 years old from October, 2004 to February, 2005were sampled f3r airborne pollutants(volatile organic compounds, formaldehyde, respiratory particles, carbon dioxide and bacteria) using the Korean Indoor Air Quality Official Method. The concentrations of $CO_2$, TVOCs, HCHO, bacteria and PM10 in the less than 1 year old apartments were determined to be $773.6{\pm}422.3ppm$, $4,393.8{\pm}2,758.2{\mu}g/m^3$, $98.0{\pm}56.4{\mu}g/m^3$, $254.0{\pm}186.3CFU/m^3$ and $31.7{\pm}14.8{\mu}g/m^3$, respectively, Also, the concentrations of those in the more than 4 years old apartments were determined to be $798.9{\pm}266.5ppm$, $792.7{\pm}398.3{\mu}g/m^3$, $70.0{\pm}30.7{\mu}g/m^3$, $245.6{\pm}122.0CFU/m^3$, $49.7f28.7{\pm}g/m^3$, respectively. The average ratios of the indoor and outdoor concentrations of $CO_2$, TVOCs, HCHO, bacteria and PM10 were 2.2, 3.6, 3.1, 3.9 and 1.4, respectively. These results of this analysis is suggested that $CO_2$, TVOCs, HCHO, bacteria and PM10 in indoor air are both emitted from source within the apartment environment and partly come from outdoor air. With the above considerations in mind, it is suggested that the research for source contribution of indoor air pollutants should be expanded and the detailed interpretation of the results on these needed further study(using principal component analysis(PCA).

  • PDF

Development and Characterizations of Environment-friendly Lime Paint (친환경성 석회 도료의 개발 및 특성 연구)

  • Hwang, Dae-Ju;Kim, Ho-Sung;Lee, Seung-Kwan;Choi, Moon-Kwan;Kim, Hwan;Lee, Jong-Dae
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Lime paint surpassing others in execution efficiency, anti-bacterial, anti-mold and small quantity emission of VOCs(Volatile Organic Compounds) characteristics was developed using a limestone as raw materials. The lime paint prepared by mixing slaked lime($37{\sim}40\;wt%$), PVA:EVA(9 wt%:1 wt%), talc(23 wt%), $TiO_2$(14 wt%), zeolite (3 wt%), antifoaming agent(5 wt%), wetting agent (5 wt%) was indicated over 99.8% of anti-bacterial and anti-mold characteristics. Also, the environment-friendly function of the lime paint was confirmed by detection of small amount of TVOCs($0.01\;mg/m^2h$) and formaldehyde($0.008\;mg/m^2h$). Execution efficiency, economy-and environment-friendly characteristics of this lime paint can make up for defects of established paints. And, it also presents the advantage of a limestone as high value added materials.

Elimination Effect of Formaldehyde, Acetaldehyde and Total Volatile Organic Compounds from Car Felts using Nano-carbon Materials

  • Cho, Wan-Goo;Park, Seung-Gyu;Kim, Hyung-Man
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.38-44
    • /
    • 2009
  • We proposed the new nano-carbon ball (NCB) materials for eliminating the total volatile organic compounds(TVOCs) from the felt which is built in the car. The concentrations of acetaldehyde and formaldehyde of the original felts were varied upon the different production lots. Acetaldehyde in the felt can be eliminated to target level($0.2{\mu}g$) after introducing 0.5 wt% of NCB into the felt. Detector tube method for analyzing formaldehyde gas was more accurate than HPLC method. Formaldehyde can be eliminated to target level (64 ppb) after introducing 0.5 wt% of NCB into the felt. We also found that TVOC can be reduced to target level ($0.32{\mu}g$) after introducing 2.0 wt% of NCB. Upon introducing small amounts of NCB into the felt, it was possible that the level of formaldehyde, acetaldehyde and TVOC formed from the felts can be reduced to the target level. We also suggest the effective analyzing method of TVOCs.

A Study on the Characteristics of Monoterpene Emissions from Different Wood Species (건조목재의 모노테르펜 배출특성에 관한 연구)

  • Park Hyun Ju;Kim Jo Chun;Park Byung Dae;Park Kang Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.145-151
    • /
    • 2006
  • As the concerns about indoor air quality (IAQ) increase in recent years, lots of research works are under way to investigate the influence of volatile organic compounds (VOCs) emitted from building products on the IAQ. One of the regulations for the IAQ is the level of total VOCs (TVOCs) from building products, assuming that the TVOCs are suspected to cause many health problems such as skin irritation, asthma, and allergy. However, the presence of biogenic VOCs, or natural VOCs (NVOCs) is believed to be beneficial to human health. Therefore, this study attempted to investigate chemical species and the NVOCs compositions of solid lumbers from different wood species. It was found that major VOC components were monoterpenes such as $\alpha$-pinene, $\beta$-pinene, d-limonene, camphene, $\alpha$-terpinene, $\gamma$-terpinene etc.

A Study on the Removal Efficiency of Harmful Pollutants in the Cooking Chamber (조리실내의 유해오염물질 제거율에 관한 연구)

  • Kwon, Woo-Taeg;Lee, Woo-Sik
    • Culinary science and hospitality research
    • /
    • v.22 no.8
    • /
    • pp.149-156
    • /
    • 2016
  • The purpose of this study is to reduce the contaminants (total volatile organic compounds (TVOCs), fine particle, odor and total airborne bacteria) during cooking process in cooking chamber, and to decrease the health damage in indoor space that has bad work environment. In order to solve the shortcomings of existing air purifiers and remove all kinds of pollutants effectively, this study focused on the development of indoor air purifiers which are made of bar type. Bio-ceramics filter which combines activated carbon and loess. The air cleaners developed with 4 measuring items including TVOCs, particulate matter, complex odor and total airborne bacteria were measured comparing their pre-service test to their post-service test after a period of time. The measured results showed higher removal efficiency of 91.02% as the concentration of TVOCs was reduced from $2,500{\mu}g/m^3$ to $223{\mu}g/m^3$. Second, the particulate matter removal ratio was 97.51% efficient with average concentration of $26.68{\mu}g/m^3$. Third, the odor showed 95.20% reduction as air dilution ratio averaged out at 144. Last, total airborne bacteria was eliminated by over 94% showing the changeable concentration from $787{\sim}814CFU/m^3$ to $47{\sim}40CFU/m^3$. In addition, the removal rate of harmful pollutants is excellent, and it is expected that the environment of the existing poor cooking room will be greatly improved by using the developed air purifier in combination with the ventilation device and the stove hood.