• Title/Summary/Keyword: TSK model

Search Result 69, Processing Time 0.024 seconds

Robot Inverse Kinematics by Using Fuzzy Reasoning (퍼지추론법을 이용한 로버트 역기구학의 해)

  • Oh, Kab-Suk;Ko, Gyeong-Chun;Kang, Geun-Taek
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.4
    • /
    • pp.279-285
    • /
    • 1993
  • Robot inverse kinematics solution is a complex nonlinear equation and very time-consuming task. This paper propose to use TSK fuzzy reasoning for solving robot inverse kinematics. A fuzzy model of inverse kinematics is identified by using input-output data and the model is used to solve the inverse kinematics. To show that, when used in robot inverse kinematics, fuzzy model is simple and generates a fairly accurate solution, a fuzzy model of inverse kinematics for PUMA robot is constructed.

  • PDF

Design of Robust Fuzzy Controller For Nonlinear System with Uncertainty Using LMI (LMI를 이용한 불확실 비선형 시스템의 강인한 퍼지 제어기 설계)

  • 전상원;주영훈;이호재;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.188-190
    • /
    • 2000
  • This paper proposed design of robust fuzzy controller for nonlinear systems in the presence of parametric uncertainties. In the design procedure, we represent the nonlinear system using Takagi-Sugeno fuzzy model. A sufficient condition of the robust stability is presented in the sense of Lyapunov for the TSK fuzzy model with uncertainties. Finally, the effectiveness of proposed controller has been through a result of numerical simulation.

  • PDF

Temperature control of the Rework-system using fuzzy PID controller (퍼지 PID 제어기에 의한 리워크 시스템의 온도제어)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6289-6295
    • /
    • 2014
  • Rework systems are the equipment used to install or remove semiconductor chips with BGA or SMD forms in printed circuit boards. The rework systems have hot air outlets. At the outlets, precise temperature control is needed to avoid heat shock. The aim of this paper was to suggest a new controller for temperature control at the hot air outlets. The suggested controller was a fuzzy PID controller. The fuzzy PID controllers were composed of TSK fuzzy rules and had outstanding ability for nonlinear systems control. This paper reports the design algorithm of fuzzy PID controllers, and the design process of the fuzzy PID controller for the temperature control of the outlets. Temperature control experiments were performed to verify the ability of the suggested controller. As a result, the RMS of the proposed method is 9.44 and the general method is 15.88. The experiments showed that the temperatures at the outlet using the suggested fuzzy PID controller followed the desired ones better than the commonly used PID controller.

A Design of Fuzzy Classifier with Hierarchical Structure (계층적 구조를 가진 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.355-359
    • /
    • 2014
  • In this paper, we proposed the new fuzzy pattern classifier which combines several fuzzy models with simple consequent parts hierarchically. The basic component of the proposed fuzzy pattern classifier with hierarchical structure is a fuzzy model with simple consequent part so that the complexity of the proposed fuzzy pattern classifier is not high. In order to analyze and divide the input space, we use Fuzzy C-Means clustering algorithm. In addition, we exploit Conditional Fuzzy C-Means clustering algorithm to analyze the sub space which is divided by Fuzzy C-Means clustering algorithm. At each clustered region, we apply a fuzzy model with simple consequent part and build the fuzzy pattern classifier with hierarchical structure. Because of the hierarchical structure of the proposed pattern classifier, the data distribution of the input space can be analyzed in the macroscopic point of view and the microscopic point of view. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화)

  • Kim Seung-Seok;Kim Yong-Tae;Kim Ju-Sik;Jeon Byeong-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Adaptive Fuzzy Control of Helicopter (헬리콥터의 적응 퍼지제어)

  • 김종화;장용줄;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.144-147
    • /
    • 2001
  • This paper presents adaptive fuzzy controller which is uncertainty or unknown variation in different parameters with nonlinear system of helicopter. The proposed adaptive fuzzy controller applied TSK(Takagi-Sugeno-Kang) fuzzy system which is not only low number of fuzzy rule, and a linear input-output equation with a constant term, but also can represent a large class of nonlinear system with good accuracy. The adaptive law was designed by using Lyapunov stability theory. The adaptive fuzzy controller is a model reference adaptive controller which can adjust the parameter $\theta$ so that the plant output tracks the reference model output. First of all, system of helicopter was considered as stopping state, and design of controller was simulated from dynamics equation with stopping state. Results show that it is controlled more successfully with a model reference adaptive controller than with a non-adaptive fuzzy controller when there is a modelling error between system and model or a continuous added noise in such unstable system.

  • PDF

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF

A New Learning Algorithm of Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Ryu, Jeong-Woong;Song, Chang-Kyu;Kim, Sung-Suk;Kim, Sung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

Fuzzy Modeling for Nonlinear System Using Multiple Model Method (다중모델기법을 이용한 비선형시스템의 퍼지모델링)

  • Lee, Chul-Heui;Ha, Young-Ki;Seo, Seon-Hak
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.323-330
    • /
    • 1997
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. To express the various and complex behavior of nonlinear system, we combine multiple model method with hierachical prioritized structure, and the mountain clustering technique is used in partitioning of system. TSK rule structure is adopted to form the fuzzy rules, and Back propagation algorithm is used for learning parameters in consequent parts of the rules. Also we soften the paradigm of Mamdani's inference mechanism by using Yager's S-OWA operators. Computer simulations are performed to verify the effectiveness of the proposed method.

  • PDF

Intelligent Controller for Networked Control Systems with Time-delay (시간지연을 갖는 네트워크 제어 시스템의 지능형 제어기 설계)

  • Bae, Gi-Sun;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.139-144
    • /
    • 2011
  • We consider the stabilization problem for a class of networked control systems with random delays in the discrete-time domain. The controller-to-actuator and sensor-to-controller time-delays are modeled as two Markov chains, and the resulting closed-loop systems are Markovian jump nonlinear systems with two modes. The T-S (Takagi-Sugeno) fuzzy model is employed to represent a nonlinear system with Markovian jump parameters. The aim is to design a fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. The necessary and sufficient conditions on the existence of stabilizing fuzzy controllers are established in terms of LMIs (Linear Matrix Inequalities). It is shown that fuzzy controller gains are mode-dependent. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method.