• 제목/요약/키워드: TSK Fuzzy System

검색결과 73건 처리시간 0.025초

PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화 (Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization)

  • 김승석;김용태;김주식;전병석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Fuzzy system construction based on Genetic Algorithms and fuzzy clustering

  • Kwak, Keun-Chang;Kim, Seoung-Suk;Ryu, Jeong-Woong;Chun, Myung-Geun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.109.6-109
    • /
    • 2002
  • In this paper, the scheme of fuzzy system construction using GA(genetic algorithm) and FCM(Fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. in the structure identification, input data is trans-formed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, the number of fuzzy rule is obtained by a given performance criterion. In the parameter identification, the premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this, one can systematically obtain optimal parameter and the v..

  • PDF

데이터 전송 지연을 고려한 인터넷 기반 이동 로봇의 원격 운용 (Teleoperation of an Internet-Based Mobile Robot with Network Latency)

  • 신직수;주문갑;강근택;이원창
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.412-417
    • /
    • 2005
  • 오늘날 인터넷을 기반으로 하는 원격 제어 기술이 급속히 발달하고 있다. 그러나 이러한 원거리 네트워크 기반 제어는 데이터를 전송함에 있어서 지연이 불가피하며, 또한 이 지연이 일정하지 않은 문제점을 지니고 있다. 이러한 네트워크 지연은 시스템의 안정성이나 정확도에 영향을 미친다. 본 논문에서는 네트워크상의 데이터 전송 지연을 고려한 이동 로봇의 원격 운용을 위해 TSK (Takagi-Sugeno-Kang) 퍼지 시스템을 이용하여 전송 지연의 확률 분포 함수와 네트워크 모델을 구하고 이를 전송 지연 예측 알고리즘에 적용하였다. 그리고 컴퓨터 시뮬레이션으로부터 제안된 알고리즘의 실효성을 검증하고, 기존의 예측 알고리즘과의 비교분석을 통하여 그 성능을 평가하였다.

Indirect Adaptive Regulator Design Based on TSK Fuzzy Models

  • Park Chang-Woo;Choi Jun-Hyuk;Sung Ha-Gyeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.52-57
    • /
    • 2006
  • In this paper, we have proposed a new adaptive fuzzy control algorithm based on Takagi-Sugeno fuzzy model. The regulation problem for the uncertain SISO nonlinear system is solved by the proposed algorithm. Using the advanced stability theory, the stability of the state, the control gain and the parameter approximation error is proved. Unlike the existing feedback linearization based methods, the proposed algorithm can guarantee the global stability in the presence of the singularity in the inverse dynamics of the plant. The performance of the proposed algorithm is demonstrated through the problem of balancing and swing-up of an inverted pendulum on a cart.

지능형 디지털 재설계: 출력이 퍼지인 경우 (Intelligent Digital Redesign: A Fuzzy Output Case)

  • Lee, Ho-Jae;Park, Jin-Bae;Lee, Yeun-Woo;Joo, Young-Hoon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.126-129
    • /
    • 2002
  • An intelligent digital redesign technique (IDR) for the observer-based output feedback Takagi-Sugeno (T-5) fuzzy control system with fuzzy outputs is developed. The considered IDR condition is cubically parameterized as convex minimization problems of the norm distances between linear operators to be matched.'rho stability condition is easily embedded and the separations principle is explicitly shown.

무인 잠수정의 퍼지제어 (Fuzzy Control of Underwater Robotic Vehicles)

  • 이원창;강근택
    • 동력기계공학회지
    • /
    • 제2권2호
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

Improvement of Practical Control Method for Positioning Systems in the Presence of Actuator Saturation by Incorporating Takagi-Sugeno(TSK) Fuzzy Anti-reset Windup

  • Ibrahim, Tarig Faisal;;Salami, M.J.E.;Albagul, Abdulgani
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.975-980
    • /
    • 2004
  • Positioning system is widely used for many practical applications. This system requires a good controller to achieve high accuracy and fast response with simple and self-adjustable design. In order to satisfy the above requirements, a new practical controller for positioning systems, namely nominal characteristic trajectory following (NCTF) controller with PI compensator, has been proposed. However, the effect of actuator saturation can not be completely compensated for integrator windup when the object parameters vary. This paper presents a method to improve the NCTF controller by overcoming the problem of integrator windup by adopting a fuzzy system. The improvement of the NCTF controller is evaluated through simulation using a rotary positioning system. The simulation result has demonstrated the effectiveness of the compensated NCTF in overcoming the problem of integrator windup.

  • PDF

화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정 (Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow)

  • 백경동;천성표;이인성;김성신
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

A New Learning Algorithm of Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Ryu, Jeong-Woong;Song, Chang-Kyu;Kim, Sung-Suk;Kim, Sung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.95-101
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

다중모델기법을 이용한 비선형시스템의 퍼지모델링 (Fuzzy Modeling for Nonlinear System Using Multiple Model Method)

  • 이철희;하영기;서선학
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.323-330
    • /
    • 1997
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. To express the various and complex behavior of nonlinear system, we combine multiple model method with hierachical prioritized structure, and the mountain clustering technique is used in partitioning of system. TSK rule structure is adopted to form the fuzzy rules, and Back propagation algorithm is used for learning parameters in consequent parts of the rules. Also we soften the paradigm of Mamdani's inference mechanism by using Yager's S-OWA operators. Computer simulations are performed to verify the effectiveness of the proposed method.

  • PDF