• Title/Summary/Keyword: TSK Fuzzy Model

Search Result 65, Processing Time 0.023 seconds

Fuzzy Modelling and Fuzzy Controller Design with Step Input Responses and GA for Nonlinear Systems (비선형 시스템의 계단 입력 응답과 GA를 이용한 퍼지 모델링과 퍼지 제어기 설계)

  • Lee, Wonchang;Kang, Geuntaek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.50-58
    • /
    • 2017
  • For nonlinear control system design, there are many studies based on TSK fuzzy model. However, TSK fuzzy modelling needs nonlinear dynamic equations of the object system or a data set fully distributed in input-output space. This paper proposes an modelling technique using only step input response data. The technique uses also the genetic algorithm. The object systems in this paper are nonlinear to control input variable or output variable. In the case of nonlinear to control input, response data obtained with several step input values are used. In the case of nonlinear to output, step input response data and zero input response data are used. This paper also presents a fuzzy controller design technique from TSK fuzzy model. The effectiveness of the proposed techniques is verified with numerical examples.

An Efficient Algorithm for Big Data Prediction of Pipelining, Concurrency (PCP) and Parallelism based on TSK Fuzzy Model (TSK 퍼지 모델 이용한 효율적인 빅 데이터 PCP 예측 알고리즘)

  • Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2301-2306
    • /
    • 2015
  • The time to address the exabytes of data has come as the information age accelerates. Big data transfer technology is essential for processing large amounts of data. This paper posits to transfer big data in the optimal conditions by the proposed algorithm for predicting the optimal combination of Pipelining, Concurrency, and Parallelism (PCP), which are major functions of GridFTP. In addition, the author introduced a simple design process of Takagi-Sugeno-Kang (TSK) fuzzy model and designed a model for predicting transfer throughput with optimal combination of Pipelining, Concurrency and Parallelism. Hence, the author evaluated the model of the proposed algorithm and the TSK model to prove the superiority.

A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

  • PDF

Camera Calibration using the TSK fuzzy system (TSK 퍼지 시스템을 이용한 카메라 켈리브레이션)

  • Lee Hee-Sung;Hong Sung-Jun;Oh Kyung-Sae;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.56-58
    • /
    • 2006
  • Camera calibration in machine vision is the process of determining the intrinsic cameara parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

  • PDF

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

TSK Fuzzy Model of Dynamic Hysteresis Loops (동적 히스테리시스 루프의 TSK 퍼지 모델)

  • Seo, Wea-Seong;Lee, Won-Chang;Kang, Geun-Taek
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1336-1338
    • /
    • 1996
  • A new model of dynamic hysteresis loops is presented. The model is a TSK fuzzy model and can be identified by using input-output data obtained from hysteresis loop systems. The model is shown to exhibit an increase in area of the loop with frequency, which is a hysteretic property.

  • PDF

On-line Prediction Model of Oil Content in Oil Discharge Monitoring Equipment Using Parallel TSK Fuzzy Modeling (병렬구조 TSK 퍼지 모델을 이용한 선박용 기름배출 감시장치의 실시간 기름농도 예측모델)

  • Baek, Gyeong-Dong;Cho, Jae-Woo;Choi, Moon-Ho;Kim, Sung-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • The oil tanker ship over 150GRT must equip oil content meter which satisfy requirements of revised MARPOL 73/78. Online measurement of oil content in complex samples is required to have fast response, continuous measurement, and satisfaction of ${\pm}10ppm$ or ${\pm}10%$ error in this field. The research of this paper is to develop oil content measurement system using analysis of light transmission and scattering among turbidity measurement methods. Light transmission and scattering are analytical methods commonly used in instrumentation for online turbidity measurement of oil in water. Gasoline is experimented as a sample and the oil content approximately ranged from 14ppm to 600ppm. TSK Fuzzy Model may be suitable to associate variously derived spectral signals with specific content of oil having various interfering factors. Proposed Parallel TSK Fuzzy Model is reasonably used to classify oil content in comparison with other models. Those measurement methods would be effectively applied and commercialized to oil content meter that is key components of oil discharge monitoring control equipment.

Adaptive PID Controller for Nonlinear Systems using Fuzzy Model (퍼지 모델을 이용한 비선형 시스템의 적응 PID 제어기)

  • Kim, Jong-Hua;Lee, Won-Chang;Kang, Geun-Taek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.85-90
    • /
    • 2003
  • This paper presents an adaptive PID control scheme for nonlinear system. TSK(Takagi-Sugeno-Kang) fuzzy model is used to estimate the error of control input, and the parameters of PID controller are adapted using the error. The parameters of TSK fuzzy model also adapted to plant. The proposed algorithm allows designing adaptive PID controller which Is adapted to the uncertainty of nonlinear plant and the change of parameters. The usefulness of the proposed algorithm is also certificated by the several simulations.

Design of Fuzzy PI Controllers for the Temperature Control of Soldering Systems (솔더링 시스템의 온도 제어를 위한 퍼지 PI 제어기 설계)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.325-333
    • /
    • 2016
  • This paper proposes controller design algorithms for a ceramic soldering iron temperature control system, and reports their effectiveness in a control experiment. Because the responses of the ceramic soldering iron temperature to the control input are non-linear and very slow, precise modeling and controller design is difficult. In this study, the temperature characteristics of a ceramic soldering iron are represented by TSK fuzzy models consisting of TSK fuzzy rules. In the fuzzy rules, the premise variable is the control input and the consequences are the transfer functions. The transfer functions in the fuzzy model were obtained from the step input responses. As the responses of the ceramic soldering iron temperature are very slow, it is difficult to obtain the complete step input responses. This paper proposes a genetic algorithm to obtain the transfer functions from an incomplete step input responses, and showed its effectiveness in examples. This paper also reports a fuzzy controller design method from the TSK fuzzy model and examples. The proposed methods were applied to the temperature control experiments of ceramic iron. The TSK fuzzy model consisted of 7 TSK fuzzy rules, and the consequences were PI controllers. The experimental results of the proposed fuzzy PI controller were superior to the linear controller and were as good as in previous studies using a fuzzy PID controller.

Design and Analysis of TSK Fuzzy Inference System using Clustering Method (클러스터링 방법을 이용한 TSK 퍼지추론 시스템의 설계 및 해석)

  • Oh, Sung-Kwun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.132-136
    • /
    • 2014
  • We introduce a new architecture of TSK-based fuzzy inference system. The proposed model used fuzzy c-means clustering method(FCM) for efficient disposal of data. The premise part of fuzzy rules don't assume any membership function such as triangular, gaussian, ellipsoidal because we construct the premise part of fuzzy rules using FCM. As a result, we can reduce to architecture of model. In this paper, we are able to use four types of polynomials as consequence part of fuzzy rules such as simplified, linear, quadratic, modified quadratic. Weighed Least Square Estimator are used to estimates the coefficients of polynomial. The proposed model is evaluated with the use of Boston housing data called Machine Learning dataset.