• Title/Summary/Keyword: TRN

Search Result 144, Processing Time 0.028 seconds

Intraspecific sequence variation of trnL/F intergenic region (cpDNA) in Sedum takesimense Nakai (Crassulaceae) and aspects of geographic distribution (섬기린초에서 엽록체 DNA 염기서열의 종내 변이와 지리적 분포 양상 연구)

  • Lee, Woong;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.3
    • /
    • pp.157-162
    • /
    • 2010
  • Sequences of the trnL/F intergenic spacer of chloroplast DNA were used to investigate the intraspecific evoution and phylogeography of Sedum takesimense (Crassulaceae). The trnL/F intergeneric spacer sequences from 32 individuals of S. takesimense were either 291 bp (17 samples "without indel" in the following) or 297 bp (15samples "with indel 1") in length due to an indel of 6 bp. Two main cpDNA haplotypes were detected within S. takesimense. The haplotype with indel was found on Ulleung Island and without indel on Ulleung Island and Dok Island. This confirmed the existence of two cpDNA lineages with different geographical distributions. The cpDNA sequence analysis also suggested a putative long-distance dispersal event between Ulleung Island and Dok Island.

Performance Analysis of Interferometric Radar Altimeter by Terrain Type for Estimating Reliability of Terrain Referenced Navigation (지형대조항법의 신뢰성 추정을 위한 간섭계 레이더 고도계의 지형 유형별 성능 분석)

  • Ha, Jong Soo;Lee, Han Jin;Lee, Soo Ji;Hong, Sung Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • This paper analyzes the performance of the IRA(Interferometric Radar Altimeter) by terrain type for estimating reliability of TRN(Terrain Referenced Navigation). The accuracy of the altitude is one of the key parameters of TRN's accuracy. When the antenna of the IRA has wide beamwidth, its altitude accuracy is directly affected by the configuration of the earth's surface. Hence, the accuracy and reliability of TRN can also be affected and may cause ambiguity in positioning. We present analysis data for estimating the reliability of TRN by modeling several topographies and analyzing the performance of the IRA. The results of the analysis are verified by comparison with test data.

A systematic study of the Polygonum amphibium L. complex (Polygonaceae) based on chloroplast DNA sequences (엽록체 DNA 염기서열에 근거한 물여뀌 종집단(마디풀과)의 분류학적 연구)

  • Yaqian, Gao;Bhandari, Gauri Shankar;Park, Jin Hee;Park, Chong-Wook
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.1
    • /
    • pp.34-45
    • /
    • 2013
  • The Polygonum amphibium complex (Poygonaceae) is a highly polymorphic taxon that can grow in aquatic environments as well as in moist terrestrial habitats. Aquatic and terrestrial plants of the P. amphibium complex vary significantly in morphology and exhibit very complicated patterns of morphological variation, resulting in the description of numerous infra-specific taxa. Principal components analysis of 107 individuals of the P. amphibium complex from Asia and North America using 11 morphological characters showed that the aquatic plants can be discerned from the terrestrial plants by leaf size, shape, and petiole length. In contrast, both aquatic and terrestrial plants collected from the same population or locality shared identical sequences in the matK, psbA-trnH IGS, rbcL-accD IGS and trnL-trnF regions of the chloroplast DNA (cpDNA), suggesting that aquatic and terrestrial forms of the P. amphibium complex are not genetically diverged; morphological differences between the two forms are probably due to the differences in environmental conditions of the habitats. In addition, results from the morphological analysis and the maximum parsimony analysis of the cpDNA data set revealed that the plants from Asia including Korea, Japan, China, Mongolia and Russia Far East are diverged from those in North America and Europe, suggesting that the Asian populations should be recognized as a distinct variety, P. amphibium var. amurense Korsh.

Taxonomic position of Taxus cuspidata var. latifolia endemic to Ulleung Island (울릉도 회솔나무(Taxus cuspidata var. latifolia)의 분류학적 위치)

  • So, Soonku;Hwang, Yong;Lee, Chunghee;Lee, Jeong-Ho;Kim, Muyeol
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.1
    • /
    • pp.46-55
    • /
    • 2013
  • The purpose of this study is to review the taxonomic position of Taxus cuspidata var. latifolia endemic to Ulleung Island with related taxa T. cuspidata var. cuspidata, T. caespitosa, and T. cuspidata var. nana based on external morphological characters and DNA barcoding study. T. cuspidata var. latifolia was similar to T. cuspidata var. cuspidata in the arbor, straight trunk, and symmetric arrangement of leaf. But the unique differences between T. cuspidata var. latifolia and T. cuspidata var. cuspidata were leaf size and the exposure of seed from aril. Additionally, sequences of four chloroplast DNA regions including matK, rbcL, trnL intron and trnL-trnF spacer regions were analyzed. Korean Taxus species and their related taxon T. cuspidata var. nana were strongly supported as a monophyletic group in neighbor-joining analysis. Taxus cuspidata var. latifolia showed 100% sequence identity to related taxa. Korean endemic T. caespitosa is also distinguishable from related taxa by prostrate stems and spiral arrangement of leaf. The examinations of external morphology and DNA barcoding study suggest that the taxonomic position of T. cuspidata var. latifolia should be maintained as a variety of T. cuspidata.

A phylogenetic study of Korean Iris L. based on plastid DNA (psbA-trnH, trnL-F) sequences (Plastid DNA (psbA-trnH, trnL-F)의 염기서열에 의한 한국산 붓꽃속(Iris L.)의 계통분류학적 연구)

  • Lee, HyunJung;Park, SeonJoo
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.3
    • /
    • pp.227-235
    • /
    • 2013
  • Molecular phylogenetic studies were conducted to evaluate taxonomic identities and relationships among 16 species of the korean genus Iris L. Korean Iris was grouped by five clades. Series Laevigatae, Tripetalae, Laevigatae and Sibiricae was included to Clade I. Series Chinensis, and Easatae was composed to Clade II. Series Chinensis was included to Clade III. Series Chinensis was composed to Clade IV. Series Crossiris, Pumilae and Pardanthopsis was included to Clade V. Iris dichotoma, I. mandshurica and I. tectorum formed one clade, and it was located mostly in the basal group. I. minutiaurea and I. koreana was not formed independent clade, so it is not clear between them about taxonomic identities. Iris tectorum was established taxonomic system by Series Cossiris in Subgenus Crossiris. Series Chinensis (I. odaesanensis, I. minutiaurea, I. koreana, I. rossii var. latifoia, and I. rossii) was distinguished is clear by Series Chinensis (I. odaesanensis, I. minutiaurea and I. koreana) and Series Chinensis (I. rossii var. latifoia and I. rossii). The Genus Iris was divided into four subgenus (Limniris, Crossiris, Iris and Pardanthopsis). We thought that evolved to subgenus Limniris in subgenus Crossiris, iris and Pardanthopsis.

Phylogeny of the Polygonatum odoratum Complex Inferred from Multiple cpDNA and Nuclear RNApol2_i23 Sequence Data (Ruscaceae) (엽록체 DNA 및 핵 DNA RNApol2_i23에 근거한 둥굴레복합체 (Ruscaceae)의 계통 연구)

  • Park, Jeong-Mi;Chung, Kyong-Sook;Oh, Byoung-Un;Jang, Chang-gee
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.4
    • /
    • pp.353-360
    • /
    • 2011
  • The sequence data of the plastid DNA (trnL-F IGS, trnL intron, and trnH-psbA) and nuclear DNA (RNApol2_i23) markers were utilized to study phylogenetic relationships among the taxa in the Polygonatum odoratum complex (Ruscaceae). European P. odoratum individuals form a clade with a high bootstrap value, which is a sister to the clade of Korean P. odoratum var. odoratum, P. odoratum var. pluriflorum and P. robustum. The formation of the clade with P. odoratum var. odoratum, P. robustum, and one accession of P. odoratum var. pluriflorum indicates geological speciation in isolated populations in the islands following dispersal events from the mainlands. All data sets form two major clades, which are congruent with the subgroups divided by the basic chromosome numbers (x = 9 and x = 10). Although it is not easy to test the hypothesis of the decrease in the basic chromosome number due to scatter taxon sampling in this study, the molecular data strongly suggested that aneuploidy plays an important role in lineage diversification in the genus Polygonatum. The cytological data was not strongly supported by the cpDNA sequences. Further investigations of the cytological, morphological, and geographical characteristics with comprehensive sampling are desired to understand the evolution and lineage diversification in the genus.