• Title/Summary/Keyword: TREK-1 channel

Search Result 12, Processing Time 0.024 seconds

The effect of flavonoids on the TREK-1 channel (TREK-1 채널에 대한 플라보노이드의 효과)

  • Kim, Yang-Mi;Kim, Kyung-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2660-2667
    • /
    • 2011
  • TREK-1 channel is a member of the two-pore domain potassium (K2P) channel family that is regulated by intracellular pH, membrane stretch, polyunsaturated fatty acids, temperature, and some neuroprotectant agents. TREK-1 channel can influence neuronal excitability by regulating leakage of potassium ions and resting membrane potential. TREK-1 channel has been shown to be overexpressed in prostate cancer cells. Although the importance of these properties, relatively little is known about flavonoid effects in the regulations of TREK-1 channel. The purpose of the study was to screening of flavonoids as the TREK-1 channel modulator using one of electrophysiological techniques such as excised inside-out patch configuration. We demonstrated blocking effect on TREK-1 channel by flavonoids such as epigallocatechin-3-gallate (EGCG), curcumin and quercetin in CHO cells transiently expressing TREK-1 channel. The inhibition of TREK-1 channel by quercetin and curcumin was reversible, whereas EGCG was little reversible. Quercetin, EGCG and curcumin decreased the relative channel activity to 73%, 91% and 94%, respectively. The half-inhibitory concentration (IC50) of curcumin, quercetin and EGCG was $1.04{\pm}0.19\;{\mu}M$, $1.13{\pm}0.26\;{\mu}M$ and $13.5{\pm}2.20\;{\mu}M$ in CHO cells expressing TREK-1 channel, respectively. These results indicate that flavonoids might regulate TREK-1 and this regulation might be one of the pharmacological actions of flavonoid in nervous systems and cancer cells.

Inhibitory Effect of TREK Channel Blockers on Sperm Viability and Motility of Korean Native Bull (TREK통로 차단제의 한우 정자 생존성 및 운동성 억제 효과)

  • Kang, Dawon;Kim, Eun-Jin;Han, Jaehee
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.243-248
    • /
    • 2017
  • Antioxidants have been added to cryoprotectant or in vitro culture medium for sperm to reduce the detrimental damage, such as reactive oxygen species. However, curcumin, an antioxidant, shows dual effect on the viability and progressive motility of bovine sperm exposed to hydrogen peroxide. Low concentration of curcumin increases sperm viability and progressive motility, whereas high concentration of curcumin reduces them. This study was performed to identify whether TREK-1 channel is related to low sperm viability and motility induced by high concentration of curcumin. Curcumin reduced TREK-1 channel activity in a dose-dependent manner. TREK-1 channel was expressed in sperm obtained from Korean native bull. Treatment with TREK-1 channel blockers, such as curcumin, fluoxetine, $GdCl_3$, and spadin, significantly reduced sperm viability and motility (p < 0.05). However, TREK-1 channel activators showed different effect; linoleic acid showed an increase in sperm viability and motility, and wogonin did not affect them. These results show that TREK-1 channel is involved in the regulation of sperm viability and motility. In particular, high concentration of curcumin might reduce sperm viability and progressive motility of Korean native bull through blockage of TREK-1 channel.

The effect of antipsychotics and antidepressants on the TREK2 channel (TREK2 채널에 대한 항정신성약물 및 항우울제의 효과)

  • Kwak, Ji-Yeon;Kim, Yang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2125-2132
    • /
    • 2012
  • Fluoxetine and tianeptine are commonly used as antidepressants (AD), and haloperidol and risperidone are widely used as antipsychotic drugs (APD), and it modulates various ion channels. TREK2 channel subfamily is very similar to physiological properties of TREK1 channel which can play important roles in the pathophysiology of mental disorders such as depression and schizophrenia, therefore, the pharmacological effect of psychiatric and depression drug on TREK2 channel may be similar to those of TREK1. Using the excised inside-out patch-clamp technique, we have examined the effects of APD and AD on cloned TREK2 channel expressed CHO cells. Fluoxetine (selective serotonin release inhibitor, SSRI) inhibited the TREK2 channel in a concentration-dependent manner ($IC_{50}$ $13{\mu}M$), whereas selective serotonin reuptake enhancer (SSRE) tianeptine increased without reducing the TREK2 channel activity. Haloperidol also inhibited the TREK2 channel in a concentration-dependent manner ($IC_{50}$ $44{\mu}M$), whereas even higher concentration ($100{\mu}M$) of risperidone did not completely inhibit on the activity. This study showed that TREK2 channel was preferentially blocked by fluoxetine rather than tianeptine, and inhibited by haloperidol rather than risperidone, suggesting differential effect of TREK2 channels by APD and AD may contribute to some mechanism of adverse side effects.

Enhanced Expression of TREK-1 Is Related with Chronic Constriction Injury of Neuropathic Pain Mouse Model in Dorsal Root Ganglion

  • Han, Hyo Jo;Lee, Seung Wook;Kim, Gyu-Tae;Kim, Eun-Jin;Kwon, Byeonghun;Kang, Dawon;Kim, Hyun Jeong;Seo, Kwang-Suk
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.252-259
    • /
    • 2016
  • Neuropathic pain is a complex state showing increased pain response with dysfunctional inhibitory neurotransmission. The TREK family, one of the two pore domain $K^+$ (K2P) channel subgroups were focused among various mechanisms of neuropathic pain. These channels influence neuronal excitability and are thought to be related in mechano/thermosensation. However, only a little is known about the expression and role of TREK-1 and TREK-2, in neuropathic pain. It is performed to know whether TREK-1 and/or 2 are positively related in dorsal root ganglion (DRG) of a mouse neuropathic pain model, the chronic constriction injury (CCI) model. Following this purpose, Reverse Transcription Polymerase Chain Reaction (RT-PCR) and western blot analyses were performed using mouse DRG of CCI model and compared to the sham surgery group. Immunofluorescence staining of isolectin-B4 (IB4) and TREK were performed. Electrophysiological recordings of single channel currents were analyzed to obtain the information about the channel. Interactions with known TREK activators were tested to confirm the expression. While both TREK-1 and TREK-2 mRNA were significantly overexpressed in DRG of CCI mice, only TREK-1 showed significant increase (~9 fold) in western blot analysis. The TREK-1-like channel recorded in DRG neurons of the CCI mouse showed similar current-voltage relationship and conductance to TREK-1. It was easily activated by low pH solution (pH 6.3), negative pressure, and riluzole. Immunofluorescence images showed the expression of TREK-1 was stronger compared to TREK-2 on IB4 positive neurons. These results suggest that modulation of the TREK-1 channel may have beneficial analgesic effects in neuropathic pain patients.

The Inhibition of TREK2 Channel by an Oxidizing Agent, 5,5'-dithiobis (2-nitrobenzoic acid), via Interaction with the C-terminus Distal to the 353rd Amino Acid

  • Park, Kyoung-Sun;Bang, Hyo-Weon;Shin, Eun-Young;Kim, Chan-Hyung;Kim, Yang-Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.211-216
    • /
    • 2008
  • TREK (TWIK-RElated $K^+$ channels) and TRAAK (TWIK-Related Arachidonic acid Activated $K^+$ channels) were expressed in COS-7 cells, and the channel activities were recorded from inside-out membrane patches using holding potential of - 40 mV in symmetrical 150 mM $K^+$ solution. Intracellular application of an oxidizing agent, 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB), markedly decreased the activity of the TREK2, and the activity was partially reversed by the reducing agent, dithiothreitol (DTT). In order to examine the possibility that the target sites for the oxidizing agents might be located in the C-terminus of TREK2, two chimeras were constructed: TREK2 (1-383)/TASK3C and TREK2 (1-353)/TASK3C. The channel activity in the TREK2 (1-383)/TASK3C chimera was still inhibited by DTNB, but not in the TREK2 (1-353)/TASK3C chimera. These results indicate that TREK2 is inhibited by oxidation, and that the target site for oxidation is located between the amino acid residues 353 and 383 in the C-terminus of the TREK2 protein.

Functional expression of TREK1 channel in human bone marrow and human umbilical cord vein-derived mesenchymal stem cells (사람의 골수와 제대정맥에서 유래된 중간엽 줄기세포에서 TREK1 통로의 기능적 발현)

  • Park, Kyoung Sun;Kim, Yangmi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1964-1971
    • /
    • 2015
  • Human bone marrow or human umbilical cord vein derived-mesenchymal stem cells (hBM-MSCs or hUC-MSCs) have known as a potentially useful cell type for clinical therapeutic applications. We investigated two-pore domain potassium (K2P) channels in these cells. K2P channels play a major role in setting the resting membrane potential in many cell types. Among them, TREK1 is targets of hydrogen, hypoxia, polyunsaturated fatty acids, antidepressant, and neurotransmitters. We investigated whether hBM-MSCs and hUC-MSCs express functional TREK1 channel using RT-PCR analysis and patch clamp technique. Potassium channel with a single channel conductance of 100 pS was found in hUC-MSCs and BM-MSCs and the channel was activated by membrane stretch (-5 mmHg ~ -15 mmHg), arachidonic acid ($10{\mu}M$) and intracellular acidosis (pH 6.0). These electrophysiological properties were similar to those of TREK1. Our results suggest that TREK1 is functionally present in hBM-MSCs and hUC-MSCs, where they contribute to its resting membrane potential.

Cell proliferation inhibition effects of epigallocatechin-3-gallate in TREK2-channel overexpressing cell line (TREK2-채널 과발현 세포주에서 에피갈로카테킨-3-갈레이트의 세포 증식 억제 효과)

  • Kim, Yangmi;Kim, Kyung-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.127-135
    • /
    • 2016
  • Two-pore domain potassium (K2P) channels are the targets of physiological stimuli, such as intracellular pH, bioactive lipids, and neurotransmitters, and they set the resting membrane potential. Some types of K2P channels play a critical role in both apoptosis and tumoriogenesis. Among the K2P channels, no antagonists of the TREK2 channel have been reported. The aim of the present study was to determine if the TREK2 channel is blocked and whether cell proliferation is influenced by flavonoids in the TREK2 overexpressing HEK293 cells (HEKT2). The electrophysiological current was recorded using single channel patch clamp techniques and cell proliferation was measured using a XTT assay. The electrophysiological results showed that the TREK2 channel activity was reduced to $91.5{\pm}13.1%$ (n=5) and $82.2{\pm}13.7%$ (n=5) by flavonoids, such as epigallocatechin-3-gallate (EGCG) and quercetin in HEKT2 cells, respectively. In contrast, the EGCG analogue, epicatechin (EC), had no significant inhibitory effects on the TREK2 single channel activity. In addition, cell proliferation was reduced to $69.4{\pm}14.0%$ (n=4) by ECGG in the HEKT2 cells. From these results, EGCG and quercetin represent the first known TREK2 channel inhibitors and only EGCG reduced HEKT2 cell proliferation. This suggests that the flavonoids may work primarily by inhibiting the TREK2 channel, leading to a change in the resting membrane potential, and triggering the initiation of a change in intracellular signaling for cell proliferation. TREK2 channel may, at least in part, contribute to cell proliferation.

Alteration in Two-pore Domain K$^+$ Channel Expression in Endometrium of Pregnant Korean Cattle (임신 자궁 내막에서 Two-pore Domain 칼륨 통로의 발현 변화)

  • Choe, Chang-Yong;Tak, Hyun-Min;Kim, Chang-Woon;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.26 no.3
    • /
    • pp.209-214
    • /
    • 2011
  • Endometrium undergoing hormonal change plays important roles in preparation for implantation, fetal growth, and well-being. During pregnancy, cellular remodeling and hormonal changes in endometrium could change two-pore domain K$^+$ channel (K$_{2P}$) expression. This study was performed to identify whether K$_{2P}$ channel expression is changed in endometrium of pregnant Korean cattle, and whether the expression level is modulated by progesterone treatment. We investigated changes in the mRNA and protein expressions of K$_{2P}$ channel in pregnant endometrium using RT-PCR and Western blot analyses. The expression levels of all K$_{2P}$ channel mRNAs tested in this study, except that of TREK-1, were changed in the pregnant endometrium. mRNA levels of TASK-3 and TRAAK were significantly down-regulated, whereas those of TREK-2 and TRESK were up-regulated in the pregnant endometrium. In parallel with the RT-PCR results, Western blot analysis revealed up-regulations of TREK-2 (7.9-fold) and TRESK (2-fold) proteins levels in the pregnant endometrium. In addition, TREK-2 and TRESK protein levels were up-regulated in bovine endometrial cells by progesterone treatment (10 ${\mu}g$/ml). From these results, we suggest that the up-regulation of TREK-2 and TRESK by progesterone may contribute to the regulation of physiological changes during pregnancy.

The TREK2 Channel Is Involved in the Proliferation of 253J Cell, a Human Bladder Carcinoma Cell

  • Park, Kyung-Sun;Han, Min Ho;Jang, Hee Kyung;Kim, Kyung-A;Cha, Eun-Jong;Kim, Wun-Jae;Choi, Yung Hyun;Kim, Yangmi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.511-516
    • /
    • 2013
  • Bladder cancer is the seventh most common cancer in men that smoke, and the incidence of disease increases with age. The mechanism of occurrence has not yet been established. Potassium channels have been linked with cell proliferation. Some two-pore domain $K^+$ channels (K2P), such as TASK3 and TREK1, have recently been shown to be overexpressed in cancer cells. Here we focused on the relationship between cell growth and the mechanosensitive K2P channel, TREK2, in the human bladder cancer cell line, 253J. We confirmed that TREK2 was expressed in bladder cancer cell lines by Western blot and quantitative real-time PCR. Using the patch-clamp technique, the mechanosensitive TREK2 channel was recorded in the presence of symmetrical 150 mM KCl solutions. In 253J cells, the TREK2 channel was activated by polyunsaturated fatty acids, intracellular acidosis at -60 mV and mechanical stretch at -40 mV or 40 mV. Furthermore, small interfering RNA (siRNA)-mediated TREK2 knockdown resulted in a slight depolarization from $-19.9mV{\pm}0.8$ (n=116) to $-8.5mV{\pm}1.4$ (n=74) and decreased proliferation of 253J cells, compared to negative control siRNA. 253J cells treated with TREK2 siRNA showed a significant increase in the expression of cell cycle boundary proteins p21 and p53 and also a remarkable decrease in protein expression of cyclins D1 and D3. Taken together, the TREK2 channel is present in bladder cancer cell lines and may, at least in part, contribute to cell cycle-dependent growth.

Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

  • Wang, Kun;Kong, Xiangang
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.495-500
    • /
    • 2016
  • This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related $K^+$ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1.