• Title/Summary/Keyword: TREE FEATURE

Search Result 365, Processing Time 0.022 seconds

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

Classification Tree-Based Feature-Selective Clustering Analysis: Case of Credit Card Customer Segmentation (분류나무를 활용한 군집분석의 입력특성 선택: 신용카드 고객세분화 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • Clustering analysis is used in various fields including customer segmentation and clustering methods such as k-means are actively applied in the credit card customer segmentation. In this paper, we summarized the input features selection method of k-means clustering for the case of the credit card customer segmentation problem, and evaluated its feasibility through the analysis results. By using the label values of k-means clustering results as target features of a decision tree classification, we composed a method for prioritizing input features using the information gain of the branch. It is not easy to determine effectiveness with the clustering effectiveness index, but in the case of the CH index, cluster effectiveness is improved evidently in the method presented in this paper compared to the case of randomly determining priorities. The suggested method can be used for effectiveness of actively used clustering analysis including k-means method.

Comparing Machine Learning Classifiers for Movie WOM Opinion Mining

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3169-3181
    • /
    • 2015
  • Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.

Improving the Performance of Korean Text Chunking by Machine learning Approaches based on Feature Set Selection (자질집합선택 기반의 기계학습을 통한 한국어 기본구 인식의 성능향상)

  • Hwang, Young-Sook;Chung, Hoo-jung;Park, So-Young;Kwak, Young-Jae;Rim, Hae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.654-668
    • /
    • 2002
  • In this paper, we present an empirical study for improving the Korean text chunking based on machine learning and feature set selection approaches. We focus on two issues: the problem of selecting feature set for Korean chunking, and the problem of alleviating the data sparseness. To select a proper feature set, we use a heuristic method of searching through the space of feature sets using the estimated performance from a machine learning algorithm as a measure of "incremental usefulness" of a particular feature set. Besides, for smoothing the data sparseness, we suggest a method of using a general part-of-speech tag set and selective lexical information under the consideration of Korean language characteristics. Experimental results showed that chunk tags and lexical information within a given context window are important features and spacing unit information is less important than others, which are independent on the machine teaming techniques. Furthermore, using the selective lexical information gives not only a smoothing effect but also the reduction of the feature space than using all of lexical information. Korean text chunking based on the memory-based learning and the decision tree learning with the selected feature space showed the performance of precision/recall of 90.99%/92.52%, and 93.39%/93.41% respectively.

Unseen Model Prediction using an Optimal Decision Tree (Optimal Decision Tree를 이용한 Unseen Model 추정방법)

  • Kim Sungtak;Kim Hoi-Rin
    • MALSORI
    • /
    • no.45
    • /
    • pp.117-126
    • /
    • 2003
  • Decision tree-based state tying has been proposed in recent years as the most popular approach for clustering the states of context-dependent hidden Markov model-based speech recognition. The aims of state tying is to reduce the number of free parameters and predict state probability distributions of unseen models. But, when doing state tying, the size of a decision tree is very important for word independent recognition. In this paper, we try to construct optimized decision tree based on the average of feature vectors in state pool and the number of seen modes. We observed that the proposed optimal decision tree is effective in predicting the state probability distribution of unseen models.

  • PDF

A Study on The Feature Selection and Design of a Binary Decision Tree for Recognition of The Defect Patterns of Cold Mill Strip (냉연 표면 흠 분류를 위한 특징선정 및 이진 트리 분류기의 설계에 관한 연구)

  • Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae;Kim, Kyoung-Min
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2330-2332
    • /
    • 1998
  • This paper suggests a method to recognize the various defect patterns of cold mill strip using binary decision tree automatically constructed by genetic algorithm. The genetic algorithm and K-means algorithm were used to select a subset of the suitable features at each node in binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes by a linear decision boundary. This process was repeated at each node until all the patterns are classified into individual classes. The final recognizer is accomplished by neural network learning of a set of standard patterns at each node. Binary decision tree classifier was applied to the recognition of the defect patterns of cold mill strip and the experimental results were given to demonstrate the usefulness of the proposed scheme.

  • PDF

Feature Based Decision Tree Model for Fault Detection and Classification of Semiconductor Process (반도체 공정의 이상 탐지와 분류를 위한 특징 기반 의사결정 트리)

  • Son, Ji-Hun;Ko, Jong-Myoung;Kim, Chang-Ouk
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • As product quality and yield are essential factors in semiconductor manufacturing, monitoring the main manufacturing steps is a critical task. For the purpose, FDC(Fault detection and classification) is used for diagnosing fault states in the processes by monitoring data stream collected by equipment sensors. This paper proposes an FDC model based on decision tree which provides if-then classification rules for causal analysis of the processing results. Unlike previous decision tree approaches, we reflect the structural aspect of the data stream to FDC. For this, we segment the data stream into multiple subregions, define structural features for each subregion, and select the features which have high relevance to results of the process and low redundancy to other features. As the result, we can construct simple, but highly accurate FDC model. Experiments using the data stream collected from etching process show that the proposed method is able to classify normal/abnormal states with high accuracy.

Malicious URL Detection by Visual Characteristics with Machine Learning: Roles of HTTPS (시각적 특징과 머신 러닝으로 악성 URL 구분: HTTPS의 역할)

  • Sung-Won HONG;Min-Soo KANG
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • In this paper, we present a new method for classifying malicious URLs to reduce cases of learning difficulties due to unfamiliar and difficult terms related to information protection. This study plans to extract only visually distinguishable features within the URL structure and compare them through map learning algorithms, and to compare the contribution values of the best map learning algorithm methods to extract features that have the most impact on classifying malicious URLs. As research data, Kaggle used data that classified 7,046 malicious URLs and 7.046 normal URLs. As a result of the study, among the three supervised learning algorithms used (Decision Tree, Support Vector Machine, and Logistic Regression), the Decision Tree algorithm showed the best performance with 83% accuracy, 83.1% F1-score and 83.6% Recall values. It was confirmed that the contribution value of https is the highest among whether to use https, sub domain, and prefix and suffix, which can be visually distinguished through the feature contribution of Decision Tree. Although it has been difficult to learn unfamiliar and difficult terms so far, this study will be able to provide an intuitive judgment method without explanation of the terms and prove its usefulness in the field of malicious URL detection.

A Study on The Improvement of Douglas-Peucker's Polyline Simplification Algorithm (Douglas-Peucker 단순화 알고리듬 개선에 관한 연구)

  • 황철수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.117-128
    • /
    • 1999
  • A Simple tree-structured line simplification method, which exactly follows the Douglas-Peucker algorithm, has a strength for its simplification index to be involved into the hierarchical data structures. However, the hierarchy of simplification index, which is the core in a simple tree method, may not be always guaranteed. It is validated that the local property of line features in such global approaches as Douglas-Peucker algorithm is apt to be neglected and the construction of hierarchy with no thought of locality may entangle the hierarchy. This study designed a new approach, CALS(Convex hull Applied Line Simplification), a) to search critical points of line feature with convex hull search technique, b) to construct the hierarchical data structure based on these critical points, c) to simplify the line feature using multiple trees. CALS improved the spatial accuracy as compared with a simple tree method. Especially CALS was excellent in case of line features having the great extent of sinuosity.

  • PDF