• Title/Summary/Keyword: TREADMILL

Search Result 822, Processing Time 0.025 seconds

Effects of Eucommia Ulmoides Oliver and Treadmill Exercise on the Osteoporosis of Rats Caused by Glucocorticoid Induction (두충 추출물 투여와 트레드밀 운동이 골다공증 유발 백서의 골대사에 미치는 영향)

  • Yoon, Seok-Joo;Kim, Kyung-Yoon;Kim, Gye-Yeop;Nam, Ki-Won;Sim, Ki-Cheol;Kim, Eun-Jung;Chung, Hun-Woo;Kim, Hyung-Woo;Kim, Gi-Do
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.884-890
    • /
    • 2008
  • This study classified 40 of 10 weeks-old male Sprague Dawley rats which have osteoporosis caused by glucocorticoid(GC) induction into four groups of 10 rats and made the subjects medicated them Eucommia ulmoides Oliver and participate in treadmill exercise. Group I was non-treatment after GC induction; Group II was treadmill exercise after GC induction; Group III was Eucommia ulmoides Oliver feeding after GC induction; Group IV was treadmill exercise and Eucommia ulmoides Oliver feeding after GC induction. In the bone mineral density and bone strength test, there was a statistically significant difference between the group I, II, III compared to group IV(p<0.05). In the osteocalcin level as one of bone formation indexes, there was a statistically significant difference between the group I, II, III compared to group IV(p<0.05). In respect to the calcium there was a statistically significant difference between group I, II, III compared to group IV(p<0.05). In respect to histological findings, the group IV showed mild femur disruption and lytic change on femur section. The above results suggests that Eucommia ulmoides Oliver medicated and treadmill exercise is effective to prevention and treatment of osteoporosis.

Effects of Inclination Treadmill Training with Dynamic Stretching on the Spasticity and Gait of Chronic Stroke Patients (동적 스트레칭을 접목한 경사 트레드밀 보행 훈련이 만성 뇌졸중 환자의 경직과 보행에 미치는 효과)

  • Shin, Hyo-Seob;Choi, Jong-Duk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.447-454
    • /
    • 2014
  • PURPOSE: The aim of this study was to determine the effect of inclination treadmill training with dynamic stretching on the spasticity and gait of chronic stroke patients. METHODS: Twenty two subjects were randomly assigned to either an experimental group (EG, n=11) or a control group (CG, n=11). Both groups participated in a standard rehabilitation program; in addition, the EG participated in inclination treadmill training for 20 min per day, five times per week, for 4 weeks, and the CG participated in treadmill walking training for 20 min per day, five times per week, for 4 weeks. Outcome measurements, recorded before and post intervention. Walking ability was measured using the 10m walking test (10MWT) and Timed up and go (TUG) test. Spasticity of the medialis gastrocnemius was measured using a myotonometer. RESULTS: Significant differences were observed the both groups for walking ability and spasticity after the training program. The results of the study were follows: 10MWT and TUG was significantly increased in both groups (p<0.05) and it was also found to be significant between groups after intervention (p<0.05). Spasticity was significantly increased in both groups (p<0.05) and it was also found to be significant between the groups after intervention (p<0.05). CONCLUSION: These findings indicate that inclination treadmill training improves gait ability and reduces spasticity of the medialis gastrocnemius. Inclination treadmill training may be used as an easy, effective and accessible way to improve the walking ability and decrease spasticity in stroke patients. Further studies are necessary to generalize the findings of this study.

Comparison of the Effect of Treadmill Walking Combined With Obstacles-Crossing on Walking Function in Stroke Patients (장애물 통과 트레드밀 보행훈련이 뇌졸중 환자의 보행기능에 미치는 효과)

  • Jeong, Yeon-Gyu;Jeong, Yeon-Jae;Kim, Hyun-Sook
    • Physical Therapy Korea
    • /
    • v.20 no.3
    • /
    • pp.9-18
    • /
    • 2013
  • The study aimed to compare the effect of the treadmill walking training combined with obstacle-crossing (TWT-OC) and treadmill walking training (TWT) on the walking function of patients with chronic stroke. 29 subjects volunteered to participate in this study; they were randomly assigned to either TWT-OC group (15 subjects) or TWT group (14 subjects). Subjects from the TWT-OC group underwent a treadmill walking combined with obstacles-crossing for 30 minutes daily, three days a week for four weeks, whereas subjects from the TWT group received only a treadmill walking. The 10 m walk test (10MWT), 6-min walk test (6MWT), berg balance scale (BBS), timed up and go test (TUG), activities-specific balance confidence-Korean version (ABC-K), and walking ability questionnaire (WAQ) were measured before and after the 4-week training. The TWT-OC group showed significantly better functional mobility of walking and balance measured by 6MWT (p<.01), BBS (p<.01), and TUG scores (p<.05) when compared with those of the TWT group. Further, within-group comparison showed significant improvement in all variables (p<.01) except for 10MWT. These findings suggest that the TWT-OC and TWT may be helpful for improving the walking function of patients with chronic stroke, and the TWT-OC has probably more favorable outcomes for chronic stroke, however, further trials with wider range of subjects are warranted for generalization and clinical relevance.

Effects of the Trunk Exercise Using PNF Combined with Treadmill on Balance and Walking Ability in Individuals with Parkinson's Disease (고유수용성신경근촉진법을 이용한 체간 운동과 트레드밀을 결합한 훈련이 파킨슨병 환자의 균형과 보행 능력에 미치는 영향)

  • Bang, Dae-Hyouk;Cho, Hyuk-Shin
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.333-341
    • /
    • 2017
  • Purpose: This study was to explore the effects of trunk exercise using PNF combined with treadmill training on balance and walking ability in patients with Parkinson's disease. Methods: This study included 16 patients with Parkinson's disease. Participants were randomly assigned to 2 groups: an experimental group (n=8) and a control group (n=8). All participants underwent treadmill training for 30 minutes. In addition, the experimental group (trunk exercise using PNF) and control group (conventional training) participated in a 30-minute exercise program. Both groups performed the training 5 times per week for 4 weeks. Disease severity (determined using the unified Parkinson's disease rating scale motor subscale, UPDRS-3), balance (determined using the Berg balance scale, BBS), walking speed (determined using the 10-meter walking test, 10MWT), and walking endurance (determined using the 6-minute walking test, 6MWT) were measured at baseline and after 4 weeks. Results: Pre- to post-intervention improvement was noted on all outcome measures for both groups (p<0.05). Post-intervention, there was a significant improvement in the experimental group as compared to the control group for the following measured outcomes (p<0.05): UPDRS-3 (p=0.03; 95% CI, -5.52 to -0.24), BBS (p=0.04; 95% CI, 0.59 to 6.45), 10MWT (p=0.01; 95% CI, -2.19 to -0.42), and 6MWT (p=0.04; 95% CI, 1.81 to 96.72) Conclusion: The results of this study revealed that trunk exercise using PNF plus treadmill training improves balance and walking ability as compared to conventional training plus treadmill training in patients with Parkinson's disease.

The Effect of Gaze Angle on Muscle Activity and Kinematic Variables during Treadmill Walking

  • Kim, Bo-Suk;Jung, Jae-Hu;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • Objective: The purpose of this study was to determine how gaze angle affects muscle activity and kinematic variables during treadmill walking and to offer scientific information for effective and safe treadmill training environment. Method: Ten male subjects who have no musculoskeletal disorder were recruited. Eight pairs of surface electrodes were attached to the right side of the body to monitor the upper trapezius (UT), rectus abdominis (RA), erector spinae (ES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), medialis gastrocnemius (MG), and lateral gastrocnemius (LG). Two digital camcorders were used to obtain 3-D kinematics of the lower extremity. Each subject walked on a treadmill with a TV monitor at three different heights (eye level; EL, 20% above eye level; AE, 20% below eye level; BE) at speed of 5.0 km/h. For each trial being analyzed, five critical instants and four phases were identified from the video recording. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: This study found that average and peak IEMG values for EL were generally smaller than the corresponding values for AE and BE but the differences were not statically significant. There were also no significant changes in kinematic variables among three different gaze angles. Conclusion: Based on the results of this study, gaze angle does not affect muscle activity and kinematic variables during treadmill walking. However, it is interesting to note that walking with BE may increase the muscle activity of the trapezius and the lower extremity. Moreover, it may hinder proper dorsiflexion during landing phase. Thus, it seems to reasonable to suggest that inappropriate gaze angle should be avoided in treadmill walking. It is obvious that increased walking speed may cause a significant changes in biomechanical parameters used in this study. It is recommended that future studies be conducted which are similar to the present investigation but using different walking speed.

Validity of a Portable APDM Inertial Sensor System for Stride Time and Stride Length during Treadmill Walking

  • Tack, Gye Rae;Choi, Jin Seung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • Objective: The purpose of this study was to compare the accuracy of stride time and stride length provided by a commercial APDM inertial sensor system (APDM) with the results of three dimensional motion capture system (3D motion) during treadmill walking. Method: Five healthy men participated in this experiment. All subjects walked on the treadmill for 3 minutes at their preferred walking speed. The 3D motion and the APDM were simultaneously used for extracting gait variables such as stride time and stride length. Mean difference and root mean squared (RMS) difference were used to compare the measured gait variables from the two measurement devices. The regression equation derived from the range of motion of the lower limb was also applied to correct the error of stride length. Results: The stride time extracted from the APDM was almost the same as that from the 3D motion (the mean difference and RMS difference were less than 0.0001 sec and 0.0085 sec, respectively). For stride length, mean difference and RMS difference were less than 0.1141 m and 0.1254 m, respectively. However, after correction of the stride length error using the derived regression equation, the mean difference and the RMS difference decreased to 0.0134 m and 0.0556 m or less, respectively. Conclusion: In this study, we confirmed the possibility of using the temporal variables provided from the APDM during treadmill walking. By applying the regression equation derived only from the range of motion provided by the APDM, the error of the spatial variable could be reduced. Although further studies are needed with additional subjects and various walking speeds, these results may provide the basic data necessary for using APDM in treadmill walking.

The Effects of Handrails during Treadmill Gait Training in Stroke Patients (뇌졸중 환자의 트레드밀 훈련 시 손잡이 유무 및 위치가 보행 및 균형에 미치는 영향)

  • Nam, Seok-Hyun;Kang, Kyung-Woo;Kwon, Jung-Won;Choi, Yong-Won;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Purpose: The purpose of this study was to examine the influence of a handrail (presence and position) on treadmill gait and balance in stroke patients during gait training. Methods: 39 patients with stroke (male 31, female 8) participated in this study. The training groups were classified into a no-handrail group (NHG), front handrail group (FHG), and bilateral handrail group (BHG). Each group comprised 13 subjects. The subjects were trained to walk in a straight path 30 minutes per day for 8 weeks. The Good Balance System was used to measure static balance and dynamic balance. To measure walking ability, timed up and go (TUG) was also assessed. Results: The NHG showed no significant differences in static balance, dynamic balance, and TUG. The FHG was significantly different in their medial-lateral speed of static balance, dynamic balance, and TUG. The BHG was significantly different in their static balance, dynamic balance, and TUG. Conclusion: These findings consider the effects of holding handrails concomitantly with changes in postural stability. We conclude that for training stroke patients, treadmill walking while holding handrails improves balance and gait more than treadmill walking without holding handrails. The resulting changes in muscle activity patterns may facilitate the transfer to a gait pattern. The results of this study suggest methods for training treadmill walking in stroke patients.

A Feasibility Study about Change of Ryodoraku Characteristics Caused by Treadmill Exercise Test (트레드밀 운동부하로 인한 양도락 특성의 연속적인 변화)

  • Bae, Jang-Han;Oh, Yu Jin;Kim, Jaeuk U.
    • The Journal of Korean Medicine
    • /
    • v.38 no.3
    • /
    • pp.1-12
    • /
    • 2017
  • Objectives: To interpret the meanings of Ryodoraku data and to use it as diagnosis tool, study on relationship between Ryodoraku and autonomic nervous reaction (ANR) has to be preceded prior to disease studies. This study aims to observe the change of Ryodoraku characteristics with ANR caused by treadmill exercise via a feasibility study. Methods: The electric current at 24 Ryodoraku points(H1~H6 at left/right wrists and F1~F6 at left/right feet) and vital signs were measured at rest, immediately after the treadmill exercise test, and at later recovery times(10min, 20min, 30min, 60min, 120min after the exercise test). The calculated Ryodoraku scores (RSs) were analyzed using repeated ANOVA test. Results: The RSs in the wrist Ryodoraku points were significantly increased immediately after the exercise (p<.05) and at 10min recovery time (p<.01), and no significant differences were found during the rest of the experimental sets. To the contrary, the RSs in the feet Ryodoraku points showed less difference throughout all the measurement time. Conclusions: The Ryodoraku characteristics change more sensitively in the wrists than in the feet in accordance with the previously reported sweat gland responses of the treadmill exercise. This is the first feasibility study to observe the change of Ryodoraku characteristics caused by treadmill exercise, and it shows the Ryodoraku characteristics are in accordance with known ANS responses.

The Effects of Backward Walking Training With Inclined Treadmill on the Gait in Chronic Stroke Patients (경사트레드밀에서 후방보행 훈련이 뇌졸중 환자의 보행에 미치는 영향)

  • Oh, Yong-seop;Woo, Young-keun
    • Physical Therapy Korea
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2016
  • Background: Gait problems appear in most stroke patients. Commonly, stroke patients show the typical abnormal gait patterns, such as circumduction, genu recurvatum, and spastic paretic stiff-legged gait. An inclined treadmill gait exercise is good for gait problems of stroke patients. In addition, the backward walking training has been recommended in order to improve the component of the movement for the forward walking. Objects: The purpose of this study to investigated the effects of backward walking with inclined treadmill training on the gait in chronic stroke patients. Methods: A total of 30 volunteers were randomly allocated to two groups that walked on an inclined treadmill: the experimental group ($n_1=15$), which walked backward, and the control group ($n_2=15$), which walked forward. To measure the improvement of the patients' gait, a Figure of Eight Walking Test (F8W), Four Square Step Test (FSST), and Functional Gait Assessment (FGA) were performed. We also measured spatio-temporal gait variables, including gait speed, cadence, stride length, and single limb support using a three-axial wireless accelerometer. The measurements were taken before and after the experiment. The Wilcoxon signed-rank test was used to compare both groups before and after the interventions. The Mann-Whitney U test was used for the comparisons after the interventions. The statistical significance was set at ${\alpha}=.05$. Results: Before and after experiment, all dependent variables were significantly different between the two groups (p<.05). As compared to the control group, the experimental group showed more significant improvements in F8W, FSST, speed, cadence, stride length, and single limb support (p<.05); however, FGA in this group was not significantly different from the control (p>.05). Conclusion: Our results suggest that backward walking on an inclined treadmill is more effective for improving the gait of stroke patients than forward walking.

The Effects of Treadmill Training on Spastic Cerebral Palsy Children's Gross Motor Functions (트레드밀 훈련이 경직성 양하지 마비 아동의 대동작 운동 기능에 미치는 영향)

  • Choi, Hyun Jin;Kim, Yoon Hwan
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.3
    • /
    • pp.23-30
    • /
    • 2012
  • The purpose of this study was to apply treadmill training through motor learning to cerebral palsy children and examine its effects on their Gross Motor Functions. The subjects of this study were 13 spastic diplegia children who had difficulty in independent gait, and GMFCS level III, IV. We performed treadmill gait training using the principle of weight bearing, based on 4times a week for 30 minutes before and after each session physical therapy we gave weight bearing treadmill training 5 to 10 minutes, during 7 weeks(April 9, 2012~May 26, 2012) fittingly for the children's gait characteristics. In order to test how the weight bearing treadmill training affects spastic diplegia children's gross motor functions, we measured body mobility with Gross Motor Function Measure (GMFM). These data were collected before and after the experiment and analyzed through comparison. Data collected from the 13 spastic diplegia children the results were as follows. For evaluating with regard to change in body mobility, significant difference was observed between before and after the experiment in measured gross motor functions, which were crawling, kneeling, standing, walking, jumping and running(p<0.05). According to the results of this study, when gait training through motor learning was applied to spastic cerebral palsy children, it made significant changes in their body mobility. Accordingly, for the effective application of gait training through motor learning to cerebral palsy children, it is considered necessary to make research from different angle on how such training affects children's mobility, activity of muscles in the lower limbs, and gait characteristics.

  • PDF