• 제목/요약/키워드: TRAF6

검색결과 37건 처리시간 0.033초

염증이 유발된 인간기관지상피세포에서 오미자가 Microarray를 이용한 유전자 발현 분석에 미치는 영향 (Microarray Analysis of Gene Expression Profile by Treatment of Schizandrae fructus Extract in Inflammation-induced Human Epithelial A549 Cells)

  • 정진용;정승기;정희재;이형구
    • 대한한방내과학회지
    • /
    • 제29권3호
    • /
    • pp.543-553
    • /
    • 2008
  • Objective: The goal of this study was to determine the anti-asthma mechanism of SF on TNF-${\alpha}$ induced activation on A549 (human type II-like epithelial) cells. Using oligonucleotide microarray, we sought to establish the molecular mechanism of the protective effects of SF on A549 cells. Material & Methods : Cells were cultured in three different conditions: 1) negative control group was cultured in normal condition of DMEM, 2) positive control group was activated with TNF-${\alpha}$, IL-4. and IL-1${\beta}$, and 3) SF treated group was previously treated with 0.1${\mu}g/ml$ SF after TNF-${\alpha}$, IL-4. and IL-1 activation. Cells of positive control and SF treated groups were cultured for 30 min, 1hr, 3hr and 6hr. Results : The comparative analysis of the gene expression profile revealed that proinflammatory cytokines such as IL1F8, IL1F9, IL1R1. IL1RN, IL1RAPL1, IL8, TNFRSF4, TNFSF10c, TNFSF13, TRAF5, and TRAF7 and inflammation-related genes including MMP2, MMP11, MMP14, MMP15, MMP16, MMP19, MMP25, and MMP27 were down regulated with SF treatment. Cell adhesion molecule genes such as ITGB1, ITGBL1, selectin P ligand, selectin E, ICAM2, ICAM3, VCAM1, PECAM, FCER1G and MMP28 genes were also down-regulated in SF treated A549 cells. Conclusion : These results suggest that the anti-asthmatic effects of SF could be mediated by regulating specific genes related with cell adhesion, proinflammatory cytokine and inflammation-related genes in A549 cells.

  • PDF

Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity

  • Yamauchi, Shota;Noguchi, Takuya;Ichijo, Hidenori
    • IMMUNE NETWORK
    • /
    • 제8권1호
    • /
    • pp.1-6
    • /
    • 2008
  • Apoptosis signal-regulating kinase 1 (ASK1), a mitogen- activated protein kinase kinase kinase, plays pivotal roles in stress responses. In addition, ASK1 has emerged as a key regulator of immune responses elicited by pathogen-associated molecular patterns (PAMPs) and endogenous danger signals. Recent studies have demonstrated that reactive oxygen species (ROS)-dependent activation of ASK1 is required for LPS-stimulated cytokine production as well as extracellular ATP-induced apoptosis in immune cells. The mechanism of ROS-dependent regulation of ASK1 activity by thioredoxin and TRAFs has been well characterized. In this review, we focus on the molecular details of the activation of ASK1 and its involvement in innate immunity.

Protective Effects of Bacillus coagulans JA845 against D-Galactose/AlCl3-Induced Cognitive Decline, Oxidative Stress and Neuroinflammation

  • Song, Xinping;Zhao, Zijian;Zhao, Yujuan;Jin, Qing;Li, Shengyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.212-219
    • /
    • 2022
  • Recently, the efficacy of probiotics in treatment of neurodegenerative disorders has been reported in animal and clinical studies. Here, we assessed the effects of Bacillus coagulans JA845 in counteracting the symptoms of D-galactose (D-gal)/AlCl3-induced Alzheimer's disease (AD) in a mice model through behavioral test, histological assessment and biochemical analysis. Ten weeks of pre-treatment with B. coagulans JA845 prevented cognitive decline, attenuated hippocampal lesion and protected neuronal integrity, which demonstrated the neuroprotective features of B. coagulans JA845 in vivo. We also found that supplementation of B. coagulans JA845 alleviated amyloid-beta deposits and hyperphosphorylated tau in hippocampus of D-gal/AlCl3-induced AD model mice. Furthermore, B. coagulans JA845 administration attenuated oxidative stress and decreased serum concentration of inflammatory cytokines by regulating the Nrf2/HO-1 and MyD88/TRAF6/NF-κB pathway. Our results demonstrated for the first time that B. coagulans has the potential to help prevent cognitive decline and might be a novel therapeutic approach for the treatment of neurodegenerative diseases.

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran;Kim, Min-Seuk;Jo, Hae;Byun, Hae-Mi;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.31-36
    • /
    • 2012
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

백출의 파골세포 분화에 미치는 영향 (Effect of Atractylodis Rhizoma Alba on Osteoclast Formation)

  • 박성태;이명수;전병훈;박기인;오재민
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.109-114
    • /
    • 2011
  • Atractylodis Rhizoma Alba is commonly used herbal medicine and it has been known that has immuno-regualtory effects and anti-cancer effects. The inhibition of osteoclastogenesis is essential for the prevention and treatment of osteoporosis. The aim of this study was to evaluate the effects of Atractylodis Rhizoma Alba on osteoclast differentiation in vitro and on resorbing activity of osteoclast. Osteoclast formation was evaluated in bone marrow cells (BMC) in the presence or absence of Atractylodis Rhizoma Alba. The expression of c-fos, tartrate-resistant acid phosphatase (TRAP), OSCAR, DC-STAMP, cathepsin K, MafB and NFATc1 mRNA in osteoclast precursor were assessed by RT-PCR. The levels of TNF receptor-associated factor-6 (TRAF-6), c-fos and NFATc1 protein were assessed by Western blot analysis. Also the correlation with MAPKs and NF-${\kappa}B$ pathways were measured by using Western blot analysis. With bone resorption study, I tried to evaluate the inhibitory effects of Atractylodis Rhizoma Alba on mature osteoclast function. Atractylodis Rhizoma Alba inhibited the RANKL induced osteoclastic differentiation from bone marrow macrophage in a dose dependant manner without cellular toxicity. Gene expression of c-fos and NFATc1 was significantly down regulated with Atractylodis Rhizoma Alba treatment. Atractylodis Rhizoma Alba markedly inhibited the RANKL-induced osteoclastogenesis through suppression of nuclear factor kappa b (NF-${\kappa}B$) pathway, down stream pathway of p38, ERK and JNK pathway. Taken together, I concluded that Atractylodis Rhizoma Alba have beneficial effect on osteoporosis by inhibition of osteoclast differentiation and by inhibition of functioning osteoclast. Thus I expect that Atractylodis Rhizoma Alba could be a treatment option for osteoporosis.

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

NF-κB-dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7

  • Rhee, Jae-Won;Lee, Keun-Wook;Kim, Dong-Bum;Lee, Young-Hee;Jeon, Ok-Hee;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.88-94
    • /
    • 2007
  • Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-$\kappa$B binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-$\kappa$B binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of l$\kappa$B$\alpha$;, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-$\kappa$B and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-$\kappa$B contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.

자율운항선박 도입을 위한 수치해도 데이터 활용 해상교통분석 개선방안 (A Study on Improvement of Maritime Traffic Analysis Using Shape Format Data for Maritime Autonomous Surface Ships)

  • 황태웅;황태민;윤익현
    • 해양환경안전학회지
    • /
    • 제28권6호
    • /
    • pp.992-1001
    • /
    • 2022
  • 해상교통분석은 복잡해지는 해양환경에 따라 발생하는 문제해결을 위해 다방면으로 시행되고 있다. 하지만 4차 산업혁명으로부터 도래된 자율운항선박 개발 등의 해사분야 동향은 해상교통분석에도 변화가 필요함을 암시한다. 이에 해상교통분석의 개선점을 식별하고자 관련 연구를 분석하였으며, AIS데이터의 활용도가 높은 반면에 해도정보의 활용은 그 중요도에 비해 부족한 것으로 조사되었다. 이에 본 연구는 자율운항선박의 상용화에 대비한 해상교통분석의 개선점으로서 수치해도 데이터와 선박운항데이터인 AIS데이터를 복합적으로 활용하는 방법을 제시하였다. 연구결과로써 해상교통분석에 수치해도데이터를 활용하였을 때 추출 가능한 해상교통특성을 제시하였으며 이는 향후 자율운항선박의 도입을 위한 해상교통분석에 활용가능할 것으로 기대된다.

Deletion Analysis of the Major NF-${\kappa}B$ Activation Domain in Latent Membrane Protein 1 of Epstein-Barr Virus

  • Cho, Shin;Lee, Won-Keun
    • Journal of Microbiology
    • /
    • 제37권4호
    • /
    • pp.256-262
    • /
    • 1999
  • Latent membrane protein 1 (LMP1) of the Epstein-Barr virus (EBV) is an integral membrane protein with six transmembrane domains, which is essential for EBV-induced B cell transformation. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) like membrane receptor, whose signaling requires recruitment of TNFR-associated factors (TRAFs) and leads to NF-${\kappa}B$ activation. NF-${\kappa}B$ activation by LMP1 is critical for B cell transformation and has been linked to many phenotypic changes associated with EBV-induced B cell transformation. Deletion analysis has identified two NF-${\kappa}B$ activation regions in the carboxy terminal cytoplasmic domains of LMP1, termed CTAR1 (residues 194-232) and CTAR2 (351-386). The membrane proximal C-terminal domain was precisely mapped to a PXQXT motif (residues 204-208) involved in TRAF binding as well as NF-${\kappa}B$ activation. In this study, we dissected the CTAR2 region, which is the major NF-${\kappa}B$ signaling effector of LMP1, to determine a minimal functional sequence. A series of LMP1 mutant constructs systematically deleted for the CTAR2 region were prepared, and NF-${\kappa}B$ activation activity of these mutants were assessed by transiently expressing them in 293 cells and Jurkat T cells. The NF-${\kappa}B$ activation domain of CTAR2 appears to reside in a stretch of 6 amino acids (residues 379-384) at the end of the carboxy terminus.

  • PDF

Marein Prevented LPS-Induced Osteoclastogenesis by Regulating the NF-κB Pathway In Vitro

  • Li, Yuling;Zhang, Jing;Yan, Caiping;Chen, Qian;Xiang, Chao;Zhang, Qingyan;Wang, Xingkuan;Jiang, Ke
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.141-148
    • /
    • 2022
  • Many bone diseases such as osteolysis, osteomyelitis, and septic arthritis are caused by gram-negative bacterial infection, and lipopolysaccharide (LPS), a bacterial product, plays an essential role in this process. Drugs that inhibit LPS-induced osteoclastogenesis are urgently needed to prevent bone destruction in infective bone diseases. Marein, a major bioactive compound of Coreopsis tinctoria, possesses anti-oxidative, anti-inflammatory, anti-hypertensive, anti-hyperlipidemic, and anti-diabetic effects. In this study, we measured the effect of marein on RAW264.7 cells by CCK-8 assay and used TRAP staining to determine osteoclastogenesis. The levels of osteoclast-related genes and NF-κB-related proteins were then analyzed by western blot, and the levels of pro-inflammatory cytokines were quantified by ELISA. Our results showed that marein inhibited LPS-induced osteoclast formation by osteoclast precursor RAW264.7 cells. The effect of marein was related to its inhibitory function on expressions of pro-inflammatory cytokines and osteoclast-related genes containing RANK, TRAF6, MMP-9, CK, and CAII. Additionally, marein leads to markedly inhibited NF-κB signaling pathway activation in LPS-induced RAW264.7 cells. Concurrently, when the NF-κB signaling pathway was inhibited, osteoclast formation and pro-inflammatory cytokine expression were decreased. Collectively, marein could inhibit LPS-induced osteoclast formation in RAW264.7 cells via regulating the NF-κB signaling pathway. Our data demonstrate that marein might be a potential drug for bacteria-induced bone destruction disease. Our findings provide new insights into LPS-induced bone disease.