• Title/Summary/Keyword: TOUGH2 modeling

Search Result 17, Processing Time 0.029 seconds

Development of Methodology for Fracture Network Analysis in the Unsaturated Zone using MINC Approach in TOUGH2 Code (TOUGH2 전산코드의 MINC 기법을 이용한 불포화 암반 내 단열 해석 방법론 개발)

  • Ha, Jaechul;Cheong, Jae-yeol;Kim, Soogin;Yoon, Jeonghyoun
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • The second phase of low- and intermediate-level waste (LILW) disposal facility is under planned on the sedimentary rock in unsaturated zone. In this study, we created two meshes which were a matrix continuum mesh and a fracture continuum mesh to carry out 2 dimensional numerical modeling for groundwater flow in the unsaturated zone containing fractures focused on the second phase of LILW disposal facility. Two continuum meshes were developed using MINC in meshmaker module of TOUGH2 code. A fracture continuum mesh was included the k-field distribution of the permeability derived from the Discrete Fractured Network (DFN) modeling. To apply the unsaturated zone for the modeling, the gridding steps to generate mesh were developed. Each step to generate a mesh consisted of definition of materials, setting the initial conditions and creating grids using MINC. The methodology development of meshes in this study will be applied for more precise modeling of groundwater flow and mass transport.

Benchmark Numerical Simulation on the Coupled Behavior of the Ground around a Point Heat Source Using the TOUGH-FLAC Approach (TOUGH-FLAC 기법을 이용한 점열원 주변지반의 복합거동에 대한 벤치마크 수치모사)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • The robustness of a numerical method means that its computational performance is maintained under various modeling conditions. New numerical methods or codes need to be assessed for robustness through benchmark testing. The TOUGH-FLAC modeling approach has been applied to various fields such as subsurface carbon dioxide storage, geological disposal of spent nuclear fuel, and geothermal development both domestically and internationally, and the modeling validity has been examined by comparing the results with experimental measurements and other numerical codes. In the present study, a benchmark test of the TOUGH-FLAC approach was performed based on a coupled thermal-hydro-mechanical behavior problem with an analytical solution. The analytical solution is related to the temperature, pore water pressure, and mechanical behavior of a fully saturated porous medium that is subjected to a point heat source. The robustness of the TOUGH-FLAC approach was evaluated by comparing the analytical solution with the results of numerical simulation. Additionally, the effects of thermal-hydro-mechanical coupling terms, fluid phase change, and timestep on the computation of coupled behavior were investigated.

Fault Reactivation Modeling Using Coupled TOUGH2 and FLAC3D Interface Model: DECOVALEX-2019 Task B (TOUGH2-FLAC3D Interface 모델을 통한 단층 재활성 모델링: DECOVALEX-2019 Task B)

  • Park, Jung-Wook;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.335-358
    • /
    • 2020
  • We present a numerical model to simulate coupled hydro-mechanical behavior of fault using TOUGH-FLAC simulator. This study aims to develop a numerical method to estimate fluid injection-induced fault reactivation in low permeability rock and to access the relevant hydro-mechanical stability in rock as part of DECOVALEX-2019 Task B. A coupled fluid flow and mechanical interface model to explicitly represent a fault was suggested and validated from the applications to benchmark simulations and the field experiment at Mont Terri underground laboratory in Switzerland. The pressure build-up, hydraulic aperture evolution, displacement, and stress responses matched those obtained at the site, which indicates the capability of the model to appropriately capture the hydro-mechanical processes in rock fault.

Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D (TOUGH2-MP/FLAC3D의 Barcelona Basic Model 해석 모듈 개발)

  • Lee, Changsoo;Lee, Jaewon;Kim, Minseop;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.39-62
    • /
    • 2020
  • In this study, Barcelona Basic Model (BBM) was implemented into TOUGH2-MP/FLAC3D for the numerical analysis of coupled thermo-hydro-mechanical (THM) behavior of unsaturated soils and the prediction of long-term behaviors. Similar to the methodology described in a previous study for the implementation of BBM into TOUGH-FLAC, the User Defined Model (UDM) of FLAC based on the Modified Cam Clay Model (MCCM) and the FISH function of FLAC3D were used to extend the existing MCCM module in FLAC3D for the implementation of BBM into TOUGH2-MP/FLAC3D. In the developed BBM module in TOUGH2-MP/FLAC3D, the plastic strains due to change in suction increase (SI) in addition to mean effective stress are calculated. In addition to loading-collapse (LC) yield surface, suction increase (SI) yield surface is changed by hardening rules in the developed BBM module. Several numerical simulations were conducted to verify and validate the implementation of BBM: using an example presented in the FLAC3D manual for the standard MCCM, simulation results using COMSOL, and experimental data presented in SKB Reports. In addition, the developed BBM analysis module was validated by simultaneously performing a series of modeling tests that were performed for the validation of the Quick tools developed for the purpose of effectively deriving BBM parameters, and by comparing the Quick tools and Code_Bright results reported in a previous study.

THM Coupling Analysis for Decovalex-2015 Task B2 (Decovalex-2015 Task B2를 위한 THM 해석기법 개발 및 적용)

  • Kwon, Sangki;Lee, Changsoo;Park, Seung-Hun
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.556-567
    • /
    • 2015
  • The evaluation of THM coupling behavior in deep underground repository condition is essential for the long term safety and stability assessment of high-level radioactive waste repository. In order to develop reliable THM analysis techniques effectively, an international cooperation project, DECOVALEX, is carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment planned to be conducted by JAEA was modeled by the research teams from the participating countries. In this study, a THM coupling technique combining TOUGH2 and FLAC was developed and applied to 1 dimensional THM modeling, in which rock, buffer, and heater are considered. The results were compared with those from other research teams.

Development of a Numerical Modeling Technique for Predicting Groundwater flow and Heat Transport in a Standing Column Well (수주지열정의 지하수 유동 및 지열 이동 예측을 위한 수치 모델링 기법 개발)

  • Park, Seongmin;Hwang, Gisub;Moon, Jongphil;Kihm, Jung-Hwi
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.461-471
    • /
    • 2016
  • Numerical modules based on a conventional thermo-hydrological numerical model, TOUGH2, are developed to provide a numerical modeling technique for a standing column well (SCW). Cooling and heating operations for two different types of SCW are then simulated using these modules. Modeling showed these operations to be significantly influenced by heat exchange and fluid mixing between the SCW and the adjacent geologic formation and groundwater. The results also reveal that heat exchange between the oppositely flowing outflow and inflow in the PVC or PE pipe and the SCW borehole is an important factor. Overall, the numerical modeling technique developed here can reasonably simulate fluid flow and heat transport phenomena in the complex internal structures of a SCW. The proposed technique can be used practically for the quantitative analysis of heat exchange in a SCW at the design, construction, and operation stages.

THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network

  • Kwon, Sangki;Lee, Changsoo
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency (JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the modeling were compared with the measurements from the in situ THM experiment. The predicted buffer temperature from the THM modelling was about $10^{\circ}C$ higher than measurement near by the overpack. At the other locations far from the overpack, modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling was different from the measurements, the general trends of the variation with time were found to be similar.

Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2 (이산화탄소 지중저장 모델링: 저투수 이질협재층이 이산화탄소 거동에 미치는 영향)

  • Han, Ahreum;Kim, Taehee;Kwon, Yikyun;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2017
  • TOUGH2 was used to simulate the migration of $CO_2$ injected into a sandy aquifer. A series of numerical simulations was performed to investigate the effects of a low-permeability layer (LPL) embedded in the aquifer on the injection rate and the pressure distribution of $CO_2$. The results show that the size and location of the LPL greatly affected the spread of $CO_2$. The pressure difference between two points in the aquifer, one each below and above the LPL, increased as the size of the LPL increased, showing a critical value at 200 m, above which the size effect was diminished. The location of the LPL with respect to the injection well also affected the migration of $CO_2$. When the injection well was at the center of the LPL, the injection rate of $CO_2$ decreased by 5.0% compared to the case with no LPL. However, when the injection well was at the edge of the LPL, the injection rate was decreased by only 1.6%. The vertical distance between the injection point and the LPL also affected the injection rate. The closer the LPL was to the injection point, the lower the injection rate was, by up to 8.3%. Conclusively, in planning geologic storage of $CO_2$, the optimal location of the injection well should be determined considering the distribution of the LPL in the aquifer.

Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage (CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석)

  • Jung-Wook Park;Hanna Kim;Hangbok Lee;Chan-Hee Park;Young Jae Shinn
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.399-413
    • /
    • 2023
  • The present study conducted a numerical modeling of CO2 injection at the Janggi Basin using the TOUGH-FLAC simulator, and examined the hydro-mechanical stability of the aquifer and the fault. Based on the site investigations and a 3D geological model of the target area, we simulated the injection of 32,850 tons of CO2 over a 3-year period. The analysis of CO2 plume with different values of the aquifer permeability revealed that assuming a permeability of 10-14 m2 the CO2 plume exhibited a radial flow and reached the fault after 2 years and 9 months. Conversely, a higher permeability of 10-13 m2 resulted in predominant westward flow along the reservoir, with negligible impact on the fault. The pressure changes around the injection well remained below 0.6 MPa over the period, and the influence on the hydro-mechanical stability of the reservoir and fault was found to be insignificant.

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.