• Title/Summary/Keyword: TOUGH2

Search Result 192, Processing Time 0.024 seconds

Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2 (이산화탄소 지중저장 모델링: 저투수 이질협재층이 이산화탄소 거동에 미치는 영향)

  • Han, Ahreum;Kim, Taehee;Kwon, Yikyun;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2017
  • TOUGH2 was used to simulate the migration of $CO_2$ injected into a sandy aquifer. A series of numerical simulations was performed to investigate the effects of a low-permeability layer (LPL) embedded in the aquifer on the injection rate and the pressure distribution of $CO_2$. The results show that the size and location of the LPL greatly affected the spread of $CO_2$. The pressure difference between two points in the aquifer, one each below and above the LPL, increased as the size of the LPL increased, showing a critical value at 200 m, above which the size effect was diminished. The location of the LPL with respect to the injection well also affected the migration of $CO_2$. When the injection well was at the center of the LPL, the injection rate of $CO_2$ decreased by 5.0% compared to the case with no LPL. However, when the injection well was at the edge of the LPL, the injection rate was decreased by only 1.6%. The vertical distance between the injection point and the LPL also affected the injection rate. The closer the LPL was to the injection point, the lower the injection rate was, by up to 8.3%. Conclusively, in planning geologic storage of $CO_2$, the optimal location of the injection well should be determined considering the distribution of the LPL in the aquifer.

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project (국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석)

  • Kim, A-Ram;Kim, Hyung-Mok;Kim, Hyun-Woo;Shinn, Young-Jae
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • For a successful performance of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed to be optimized for site specific geological conditions. In this study, we built a simple 2-dimensional analysis model, based on the geology of Jang-gi basin which is one of the potential sites of domestic CCS projects. We evaluated the impact of initial stress conditions and injection rate through coupled TOUGH-FLAC simulator. From the preliminary analysis, we constructed risk scenarios with the higher potential of shear slip and performed scenario analysis. Our analysis showed that normal stress regime produced the highest potential of shear slip and stepwise increasing injection rate scenario resulted in much larger pore pressure build up and consequent higher potential of the shear slip, which was evaluated using a mobilized friction coefficient.

The Current Trend to the Policy of Telecommunication Inter-connection Charge in Japan and Its Implication (일본의 통신상호접속 요금정책 동향 및 시사점)

  • 김방룡
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.3
    • /
    • pp.129-144
    • /
    • 1999
  • In recent an official announcement of NTT about a report of LRIC Model Study Group in the end of July 1999 has evoked a tough tug-of-the -war among relevant parties pertaining to the lowering problem of iner-connectino charge in Japan. This paper mainly introduces diverse response from all relevant parties about a report of LRIC Model Study Group in Japan and sort out their significant implications to our telecommunication industry.

  • PDF

A New Wall-Distance Free One-Equation Turbulence Model

  • Nakanishi Tameo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.107-109
    • /
    • 2003
  • We propose a wall distance free one-equation turbulence model. The model is organized in an extremely simple form. Only a few model constants were introduced into the model. The model is numerically tough and easy-of-use. The model also demonstrated the ability to simulate the laminar to turbulent flow transition. The model has been applied to the channel flow, the plane jet, the backward facing step flow, the flat plate boundary layer, as well as the flow around the 2D airfoil at large angles of attack, which obtained satisfactory results.

  • PDF

THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network

  • Kwon, Sangki;Lee, Changsoo
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency (JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the modeling were compared with the measurements from the in situ THM experiment. The predicted buffer temperature from the THM modelling was about $10^{\circ}C$ higher than measurement near by the overpack. At the other locations far from the overpack, modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling was different from the measurements, the general trends of the variation with time were found to be similar.

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Development of a Numerical Modeling Technique for Predicting Groundwater flow and Heat Transport in a Standing Column Well (수주지열정의 지하수 유동 및 지열 이동 예측을 위한 수치 모델링 기법 개발)

  • Park, Seongmin;Hwang, Gisub;Moon, Jongphil;Kihm, Jung-Hwi
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.461-471
    • /
    • 2016
  • Numerical modules based on a conventional thermo-hydrological numerical model, TOUGH2, are developed to provide a numerical modeling technique for a standing column well (SCW). Cooling and heating operations for two different types of SCW are then simulated using these modules. Modeling showed these operations to be significantly influenced by heat exchange and fluid mixing between the SCW and the adjacent geologic formation and groundwater. The results also reveal that heat exchange between the oppositely flowing outflow and inflow in the PVC or PE pipe and the SCW borehole is an important factor. Overall, the numerical modeling technique developed here can reasonably simulate fluid flow and heat transport phenomena in the complex internal structures of a SCW. The proposed technique can be used practically for the quantitative analysis of heat exchange in a SCW at the design, construction, and operation stages.

Physical Properties and Sensibility on the Transformed Colors from the Rustling Sounds of Fabrics (견직물의 스치는 소리로부터 변환된 색채의 물리량과 감성)

  • 김춘정;최계연;김수아;조길수
    • Science of Emotion and Sensibility
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • This paper aimed to identify the sensation and the sensibility of transformed colors from the rustling sound of silk fabrics and to visualize the relationship between sensibilities and fabrics by two-dimensional model. The rustling sounds of 7 silk fabrics were recorded and then the recorded sounds were transformed into colors by the program of sound to color transformation. The sensation and the sensibility of transformed colors were evaluated by 30 participants with Likert scale and the physical properties of each specimen were obtained with red portion (RP), green portion (GP), blue portion (BP), and sum of color count (CC) by means of new equation. The adjectives of sensibility were grouped into three groups: Elegant, Active, and Tough. Elegant was related with RP positively and CC negatively. On the other hand, Active was related with GP and CC positively. Also Tough was highly related with RP. Furthermore, the fabrics that were estimated the high purchase preference showed high CC, RP and GP. Also two dimensional model of relation of the sensation and the sensibility could help to understand those relation.

  • PDF

Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy

  • Maria Sumampa Coria;Maria Sofia Castano Ledesma;Jorge Raul Gomez Rojas;Gabriela Grigioni;Gustavo Adolfo Palma;Claudio Dario Borsarelli
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1435-1444
    • /
    • 2023
  • Objective: This study was conducted to evaluate Raman spectroscopy technique as a noninvasive tool to predict meat quality traits on Braford longissimus thoracis et lumborum muscle. Methods: Thirty samples of muscle from Braford steers were analyzed by classical meat quality techniques and by Raman spectroscopy with 785 nm laser excitation. Water holding capacity (WHC), intramuscular fat content (IMF), cooking loss (CL), and texture profile analysis recording hardness, cohesiveness, and chewiness were determined, along with fiber diameter and sarcomere length by scanning electron microscopy. Warner-Bratzler shear force (WBSF) analysis was used to differentiate tender and tough meat groups. Results: Higher values of cohesiveness and CL, together with lower values of WHC, IMF, and shorter sarcomere were obtained for tender meat samples than for the tougher ones. Raman spectra analysis allows tender and tough sample differentiation. The correlation between the quality attributes predicted by Raman and the physical measurements resulted in values of R2 = 0.69 for hardness and 0,58 for WBSF. Pearson's correlation coefficient of hardness (r = 0.84) and WBSF (r = 0.79) parameters with the phenylalanine Raman signal at 1,003 cm-1, suggests that the content of this amino acid could explain the differences between samples. Conclusion: Raman spectroscopy with 785 nm laser excitation is a suitable and accurate technique to identify beef with different quality attributes.