• Title/Summary/Keyword: TOF camera

Search Result 28, Processing Time 0.034 seconds

Low Resolution Depth Interpolation using High Resolution Color Image (고해상도 색상 영상을 이용한 저해상도 깊이 영상 보간법)

  • Lee, Gyo-Yoon;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.60-65
    • /
    • 2013
  • In this paper, we propose a high-resolution disparity map generation method using a low-resolution time-of-flight (TOF) depth camera and color camera. The TOF depth camera is efficient since it measures the range information of objects using the infra-red (IR) signal in real-time. It also quantizes the range information and provides the depth image. However, there are some problems of the TOF depth camera, such as noise and lens distortion. Moreover, the output resolution of the TOF depth camera is too small for 3D applications. Therefore, it is essential to not only reduce the noise and distortion but also enlarge the output resolution of the TOF depth image. Our proposed method generates a depth map for a color image using the TOF camera and the color camera simultaneously. We warp the depth value at each pixel to the color image position. The color image is segmented using the mean-shift segmentation method. We define a cost function that consists of color values and segmented color values. We apply a weighted average filter whose weighting factor is defined by the random walk probability using the defined cost function of the block. Experimental results show that the proposed method generates the depth map efficiently and we can reconstruct good virtual view images.

  • PDF

Foreground Segmentation and High-Resolution Depth Map Generation Using a Time-of-Flight Depth Camera (깊이 카메라를 이용한 객체 분리 및 고해상도 깊이 맵 생성 방법)

  • Kang, Yun-Suk;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.751-756
    • /
    • 2012
  • In this paper, we propose a foreground extraction and depth map generation method using a time-of-flight (TOF) depth camera. Although, the TOF depth camera captures the scene's depth information in real-time, it has a built-in noise and distortion. Therefore, we perform several preprocessing steps such as image enhancement, segmentation, and 3D warping, and then use the TOF depth data to generate the depth-discontinuity regions. Then, we extract the foreground object and generate the depth map as of the color image. The experimental results show that the proposed method efficiently generates the depth map even for the object boundary and textureless regions.

3D Fingertip Estimation based on the TOF Camera for Virtual Touch Screen System (가상 터치스크린 시스템을 위한 TOF 카메라 기반 3차원 손 끝 추정)

  • Kim, Min-Wook;Ahn, Yang-Keun;Jung, Kwang-Mo;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.287-294
    • /
    • 2010
  • TOF technique is one of the skills that can obtain the object's 3D depth information. But depth image has low resolution and fingertip occupy very small region, so, it is difficult to find the precise fingertip's 3D information by only using depth image from TOF camera. In this paper, we estimate fingertip's 3D location using Arm Model and reliable hand's 3D location information that is modified by hexahedron as hand model. Using proposed method we can obtain more precise fingertip's 3D information than using only depth image.

High-resolution Depth Generation using Multi-view Camera and Time-of-Flight Depth Camera (다시점 카메라와 깊이 카메라를 이용한 고화질 깊이 맵 제작 기술)

  • Kang, Yun-Suk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • The depth camera measures range information of the scene in real time using Time-of-Flight (TOF) technology. Measured depth data is then regularized and provided as a depth image. This depth image is utilized with the stereo or multi-view image to generate high-resolution depth map of the scene. However, it is required to correct noise and distortion of TOF depth image due to the technical limitation of the TOF depth camera. The corrected depth image is combined with the color image in various methods, and then we obtain the high-resolution depth of the scene. In this paper, we introduce the principal and various techniques of sensor fusion for high-quality depth generation that uses multiple camera with depth cameras.

Hybrid Camera System with a TOF and DSLR Cameras (TOF 깊이 카메라와 DSLR을 이용한 복합형 카메라 시스템 구성 방법)

  • Kim, Soohyeon;Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2014
  • This paper presents a method for a hybrid (color and depth) camera system construction using a photogrammetric technology. A TOF depth camera is efficient since it measures range information of objects in real-time. However, there are some problems of the TOF depth camera such as low resolution and noise due to surface conditions. Therefore, it is essential to not only correct depth noise and distortion but also construct the hybrid camera system providing a high resolution texture map for generating a 3D model using the depth camera. We estimated geometry of the hybrid camera using a traditional relative orientation algorithm and performed texture mapping using backward mapping based on a condition of collinearity. Other algorithm was compared to evaluate performance about the accuracy of a model and texture mapping. The result showed that the proposed method produced the higher model accuracy.

Development of Camera Module for Vehicle Safety Support (차량 안전 지원용 카메라 모듈 개발)

  • Shin, Seong-Yoon;Cho, Seung-Pyo;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.672-673
    • /
    • 2022
  • In this paper, we discuss a camera that is fixed in the same view as the TOF sensor and can be installed horizontally in the vehicle's moving direction. This camera applies 1280×720 resolution to improve object recognition accuracy, outputs images at 30fps, and can apply a wide-angle fisheye lens of 180° or more.

  • PDF

A Study on Depth Information Acquisition Improved by Gradual Pixel Bundling Method at TOF Image Sensor

  • Kwon, Soon Chul;Chae, Ho Byung;Lee, Sung Jin;Son, Kwang Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • The depth information of an image is used in a variety of applications including 2D/3D conversion, multi-view extraction, modeling, depth keying, etc. There are various methods to acquire depth information, such as the method to use a stereo camera, the method to use the depth camera of flight time (TOF) method, the method to use 3D modeling software, the method to use 3D scanner and the method to use a structured light just like Microsoft's Kinect. In particular, the depth camera of TOF method measures the distance using infrared light, whereas TOF sensor depends on the sensitivity of optical light of an image sensor (CCD/CMOS). Thus, it is mandatory for the existing image sensors to get an infrared light image by bundling several pixels; these requirements generate a phenomenon to reduce the resolution of an image. This thesis proposed a measure to acquire a high-resolution image through gradual area movement while acquiring a low-resolution image through pixel bundling method. From this measure, one can obtain an effect of acquiring image information in which illumination intensity (lux) and resolution were improved without increasing the performance of an image sensor since the image resolution is not improved as resolving a low-illumination intensity (lux) in accordance with the gradual pixel bundling algorithm.

Development of TOF Sensor for Vehicle Safety Support (차량 안전 지원용 TOF 센서 개발)

  • Shin, Seong-Yoon;Cho, Seung-Pyo;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.670-671
    • /
    • 2022
  • In this paper, we intend to develop a new TOF sensor that provides object occupancy information and location information by fusing the pixel value of the camera and the distance value of the TOF sensor. The developed sensor can be applied to school buses, school buses, city buses, and trucks (applicable to passenger vehicles).

  • PDF

Design of Range Measurement Systems Using Ultrasound and Camera Focusing (초음파와 카메라의 초점화를 이용한 거리계측 시스템 설계)

  • Moon, Chang-Soo;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.595-597
    • /
    • 2004
  • In this paper range measurement systems using ultrasonic and visual sensors are designed. By varying the focus of a camera, the range to a target pattern is computed. Pour different methods are tested for the focusing-based range measurement. The best result is obtained when counting edge pixels found by Laplacian operator. Higher accuracy can be obtained by fusing the measurement of camera focusing with that of ultrasonic sensor. The system designed is experimented within the range of 300-450mm.

  • PDF