• Title/Summary/Keyword: TOD Time Plan

Search Result 5, Processing Time 0.017 seconds

Optimization of TIME-OF-DAY and Estimation on the Field Application for Arterial Road (간선도로 교차로의 TOD 시간계획 최적화 및 현장적용 평가)

  • Lee, In-Gyu;Lee, Ho-Sang;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.113-123
    • /
    • 2011
  • Traffic signal control is one of the most cost-effective means of improving urban mobility. With the recent progress of ITS (Intelligent Transportation System) and the installation of the real time traffic control systems, traffic signal control is conducted in online and real time. Normally, time-of-day (TOD) signal control is used with the system, but no definite methodology has yet been available for efficient TOD signal planing designing. Such method and process are in need to optimize the traffic signal timing plan. This paper proposes the optimization of TOD signal timings on arterials. The effects of the signal timings from the proposed method were assessed in the field. The proposed includes the methods determining the separation of the TOD break points and the TOD intervals. Those were tested on an arterial consisting of ten coordinated signalized intersections. It was found from the test results that the proposed TOD signal timing plans outperformed the previous signal timings.

Development of Traffic State Classification Technique (교통상황 분류를 위한 클러스터링 기법 개발)

  • Woojin Kang;Youngho Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Traffic state classification is crucial for time-of-day (TOD) traffic signal control. This paper proposed a traffic state classification technique applying Deep-Embedded Clustering (DEC) method that uses a high dimensional traffic data observed at all signalized intersections in a traffic signal control sub area (SA). So far, signal timing plan has been determined based on the traffic data observed at the critical intersection in SA. The current method has a limitation that it cannot consider a comprehensive traffic situation in SA. The proposed method alleviates the curse of dimensionality and turns out to overcome the shortcomings of the current signal timing plan.

Development of an Online Evaluation Model for Traffic Signal Control System (교통신호제어시스템 온라인 평가모형 개발)

  • Go, Gwang-Yong;Lee, Seung-Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • There have been a lot of efforts to find more accurate evaluation methods for traffic signal control effectiveness for a long period of time. Nowadays a newly advanced method called HILSS, 'Hardware-in-the-Loop-Simulation System', is used to evaluate the overall traffic control's effectiveness including physical control environments like communication conditions, hardware performance, controller's mechanical operations and so on. In this study, an Online-HILSS model has been developed, which runs on CORSIM(5.0) micro traffic simulation model on-lined to COSMOS. For the verification of the model, three tests are performed as follows; (1) a comparison of TMC's timing plan with the simulated green interval, (2) as a case study, a delay distribution comparison of the online simulation with the CORSIM stand-alone simulation. The result of the first test shows that the model can run the simulation green interval by TMC's timing plan correctly. The result of second test shows that the online simulation of the model brings the same simulation results with the CORSIM offline simulation in case of the same timing plan. These results mean that the online evaluation model could be a reliable tool to measure a real-time signal control effectiveness of a wide area street network with the HILSS method.

Determination Method of Signal Timing Plan Using Travel Time Data (통행시간 자료를 이용한 신호시간계획의 결정 방법)

  • Jeong, Young-Je
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.52-61
    • /
    • 2018
  • This research suggested the traffic signal timing calculation model for signal intersections based on sectional travel time. A detection system that collects sectional travel time data such as Urban Transport Information System(UTIS) is applied. This research developed the model to calculate saturation flow rate and demand volume from travel time information using a deterministic delay model. Moreover, this model could determine the traffic signal timings to minimize a delay based on Webster model using traffic demand volume. In micro simulation analysis using VISSIM and its API ComInterface, it checked the saturation conditions and determined the traffic signal timings to minimize the intersection delay. Recently, sectional vehicle detection systems are being installed in various projects, such as Urban Transportation Information System(UTIS) and Advanced Transportation Management System(ATMS) in Korea. This research has important contribution to apply the traffic information system to traffic signal operation sector.

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF