• Title/Summary/Keyword: TOC removal

Search Result 217, Processing Time 0.021 seconds

Effect of Operating Parameters on Methyl Orange Removal in Catalytic Ozonation (촉매 오존화 공정에서 메틸오렌지 제거에 미치는 운전변수의 영향)

  • Lee, Myoung-Eun;Kim, Ji-Eun;Chung, Jae Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.412-417
    • /
    • 2017
  • Removal characteristics of methyl orange and their dependence on operating parameters in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon enhanced the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting methyl orange degradation. As the carbon dose increases, the pseudo-first order rate constants of methyl orange degradation increased, resulting in the fast removal of methyl orange. The increase of gaseous ozone concentration enhanced the mass transfer to the aqueous solution, therefore, promoted the methyl orange removal. The methyl orange degradation was not significantly affected by the change of pH in the range of 5~12, and TOC removal was negligibly affected by the variation of pH over 7. The results indicate that the catalytic ozonation can be considered as an effective dye treatment technology.

Water Purification Properties of Porous Zeolite Concrete (다공성 제올라이트 콘크리트의 수질정화 특성)

  • Choi, Min Ji;Sung, Nack Kook;Park, Sung Jae;Lee, Jung Ah;Yun, Hong Su;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.332-335
    • /
    • 2011
  • As our interests in eco-friendly materials have been significantly increased, the utilization of porous zeolite concrete that has structural functionality and permeability has been increased. In this paper, the mixture of porous concrete and zeolite, which can be used as multirole boulders, was investigated for the suitability of an environment-friendly product by evaluating of the water purification ability. The contamination removal rates of BOD, TOC, T-N, and T-P in stagnant water tank were 70.6, 67.0, 57.7, and 50.6%, respectively. Also for the non-point source pollution with the inflow and the outflow, the removal rates of Zn, Pb, BOD, and COD were 99.9, 90.0, 69.2, and 33.5%, respectively. The performance of the heavy metal contamination removal for the porous zeolite showed better than that of stagnant system. Therefore, it is expected that the installation of the porous zeolite concrete can play a role as an eco-friendly products by its high contamination removal.

A study on pollutants removal characteristics of domestic riverbed filtration and riverbank filtration intake facilities (국내 복류수 및 강변여과수 취수시설의 오염물질 제거특성에 관한 연구)

  • Chan-woo Jeong;Sun-ick Lee;Sung-woo Shin;Chang-hyun Song;Bu-geun Jo;Jae-won Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.281-288
    • /
    • 2023
  • This study was performed to evaluate the pollutants removal characteristics of two types of RBFs(Riverbank filtration, Riverbed filtration) intake facilities installed in Nakdong River and in Hwang River respectively. The capacity of each RBF is 45,000 m3/d for riverbank filtration intake facility and 3,500 m3/d for riverbed filtration intake facility. According to data collected in the riverbank filtration site, removal rate of each pollutant was about BOD(Biochemical Oxygen Demand) 52%, TOC(Total Organic Carbon) 57%, SS(Suspended Solids) 44%, Total coliforms 99% correspondingly. Furthermore, Microcystins(-LR,-YR,-RR) were not found in riverbank filtered water compared to surface water in Nakdong River. DOC(Dissolved Organic Carbon) and Humics which are precursors of disinfection byproduct were also reported to be removed about 59% for DOC, 65% for Humics. Based on data analysis in riverbed filtration site in Hwang River, removal rate of each contaminant reaches to BOD 33.3%, TOC 38.5%, SS 38.9%, DOC 22.2%, UV254 21.2%, Total coliforms 73.8% respectively. Additionally, microplastics were also inspected that there was no obvious removal rate in riverbed filtered water compared to surface water in Hwang River.

Photocatalytic Oxidation of Han River Humic Substances and Change of Their Characteristics by $TiO_2/UV$ in a Rotating Photoreactor ($TiO_2/UV$ 회전반응기를 이용한 한강 휴믹물질의 광촉매산화 처리 및 특성 변화)

  • Shin, Jee-Won;Kim, Hyun-Chul;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1129-1135
    • /
    • 2005
  • In this study. the applicability of a rotating reactor for the oxidative removal of aqueous humic substances extracted from the Han River in Seoul, Korea was investigated. As air blowing for proper mixing of $TiO_2$ photocatalyst could inhibit UV-irradiation between a UV lamp and photocatalyst by air bubbles, a rotating reactor with some baffles was used for better UV-irradiation effect in this study. Han River humic substances are different from the other commercial humic substances(e.g., from Aldrich and International Humic Substance Society). Their characteristics were investigated with structural and spectroscopic analyses using FT-IR(Fourier transform-infrared), and $^{13}C$-NMR (nuclear magnetic resonance). The humic substances were extracted by XAD-7HP and treated with $TiO_2$-coated hollow beads under UV-A and UV-C irradiation in order to solve problems of separation and recovery of photocatalyst after reaction. At approximately 5 mg/L of initial TOC concentration, pH 3 and $2.0\;g-TiO_2/L$ dose, photocatalytic oxidation of Han River humic substances showed the optimum removal efficiency. Also, UV-C and UV-A lamps showed similar TOC removal efficiency. However, under UV-C irradiation, Han River humic substances were degraded to smaller compounds and increased the proportion of low molecular weight fractions compared to UV-A.

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

Effects of the Variation of Aeration Time in Sequencing Batch Reactor (SBR) (1) - Nutrient Removal (Sequencing Batch Reactor (SBR)에서 포기시간 변경에 따른 영향 (1) - 영양염류 제거)

  • Jeong, No-Sung;Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.35-47
    • /
    • 2011
  • The effect of the variation of aeration time on the removal of organics, nitrogen and phosphorus using synthetic wastewater was investigated in sequencing batch reactors (SBRs) which included DNPAOs and DNGAOs. The cycling times in four SBRs were adjusted to 12 hours and then included different aerobic times as 1 hr, 2.5 hr, 4 hr and 5.5 hr, respectively. Four SBR systems have been operated and investigated for over 40 days. Average TOC removal efficiencies were about 71 % in all SBRs. The $NH_4^+$-N removal efficiency was increased as the increase of aeration time. After changing aeration time, the total nitrogen removal efficiencies of SBRs were shown as 35 %, 85 %, 75 % and 65 %, respectively. Higher phosphorus release and uptake were occurred as the decrease of the aeration time. After all, the overall phosphorus removal efficiency decreased and the deterioration of phosphorus removal was occurred when aeration time was over 4 hr. Denitrification in aerobic conditions was observed, which showed the presence of DNPAOs and DNGAOs. In batch experiments, PAOs were shown as the most important microorganisms for the phosphorus removal in this experiment, and the role of DNGAOs was higher than that of DNAPOs for the nitrogen removal.

Effects of Surface Water Chemistry and Physicochemical Characteristics of Humic Acid on Fouling of Membrane (원수의 수질화학과 HA의 물리화학적 특성이 막 오염에 미치는 영향)

  • Bae, Jin-Youl;Han, Ihnsup;Park, Sung-Ho;Shin, Jee-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.242-247
    • /
    • 2005
  • In this study, we investigated the removal efficiencies of pollutants and permeate fluxes depending on chemistry of feed water, various molecular weight cut-offs (MWCOs) and materials of membrane, operating pressure. We used seven MWCO membranes of YC0.5, YM1, YM3, YM10, YM30, YM100 and PM30, humic acid solution and surface water as feed water, and examined variation in permeate flux. Results of TOC removal experiment demonstrate that MWCO lower 1,000daltons could remove humic acid effectively. As increasing solution pH and decreasing divalent cations ($Ca^{2+}$) concentration, TOC removal increased. But $UV_{254}$ removal efficiency increased with higher divalent cation concentration and solution pH. Membrane fouling increased with increasing electrolyte (NaCl), divalent cation concentration and decreasing solution pH. In spite of initial permeate flux of the hydrophobic membrane (PM30) was higher than that of the hydrophilic membrane (YM30), flux decline of PM30 was significant during operation. At higher operating pressure, compactness of the cake layer on the membrane surface increased, resulting in gradual increase in hydraulic resistance.

Degradation of Humic Acids by Ozone/high pH, Ozone/Hydrogen Peroxide and Ozone/Hydrogen Carbonate System ($O_3$/high pH, $O_3/H_2O_2$$O_3/{HCO_3}^-$ 시스템에서의 부식산의 분해 반응 특성)

  • Shin, Hyun Sang;Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.652-658
    • /
    • 2000
  • Chemical degradation of aqueous humic acid by ozonation was studied with respect to the direct reactions of ozone and the indirect reactions due to its preliminary decomposition to secondary oxidant, OH radical. This was characterized by analyzing TOC, $UV_{254}$ and ozone consumption measured in different experimental conditions in which ozone reacted in the presence of various concentrations of $H_2O_2$ and $HCO_3{^-}$ concentrations ranging from 20 to 100 mg/L. and different pH (5-9). The results suggest that the TOC removal is mainly dependent on indirect reactions of OH radical whereas $UV_{254}$ reduction is mainly dependent on direct reactions of ozone with humic acid molecules. It has been also found that ozone consumption was most likely to be affected by pH and alkalinity in the solution.

  • PDF

Effects of Characterization of Polymeric Al(III) Coagulants on Coagulation of Surface Water (고분자성 Al(III) 응집제의 특성이 상수원수의 응집특성에 미치는 영향)

  • Lee, Sun Gi;Han, Seung Woo;Kang, Lim Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.99-105
    • /
    • 1998
  • This research explored the feasibility of preparing and utilizing a preformed polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride solutions did produce high yields of the type of Al polymers useful to water treatment applications. PACl's characteristic analysis showed that the quantity of polymeric Al produced at value of $r(OH_{added}/Al)=2.2$ was 83% of the total aluminum in solution, as showing maximum contents and precipitate was dramatically increased when r was increased above 2.35. And PACl was stable during sitoring period so aging effect was negligible. Results of the coagulation of Nakdong river waters with three PACls showed that the effectiveness of the three coagulants can be considered as r = 2.2 > r = 2.0 > r = 2.35 which are also the order of higher polymeric aluminum contents. Coagulation results for synthetic water exhibited optimum dose of 0.25mM Al, for three PACls, but above optimum dose, r = 2.0 and 2.2 PACl impaired the coagulation and sedimentation of turbidity and humic acid because of the restabilization of particulate. The effect of pH for on coagulation of Nak Dong River water showed that it had much effect turbidity and TOC removal, especially near pH 7. But pH effect was little for turbidity and TOC removal when r = 2.35 PACl was used for coagulation, that PACl had much more precipitates content.

  • PDF

Management of Organic Matters by Constructed Treatment Wetlands during Rainfall Events (강우시 인공습지를 이용한 유기물관리)

  • Lee, Sang-Pal;Park, Je-Chul
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 2017
  • This study analyzed the changes in the concentrations of organic matters in constructed treatment wetlands, coming from discharge water from a sewage treatment plant and non-point pollutant sources during rainfall events. At the beginning of a rainfall event, a massive amount of particulate organic matter flowed in, and was removed from the sedimentation basin (S1, S2); dissolved organic matter was removed after passing through stepwise treatment processes in the wetland. During dry period in the wetland, the removal efficiency rate for COD and TOC was -21 and -7%, respectively; during the rainfall event, the removal efficiency rate for COD and TOC were 47 and 43%, respectively. The highly-concentrated organic matters that flowd in at the beginning of the rainfall event was stabilized by various structures in the wetland before water discharge. Cyanobacteria blooms annually at the confluence of the So-ok stream and Daecheong Lake. Therefore, it is expected that the wetland will contribute significantly to reducing cyanobacteria and improving water quality in the area.