• Title/Summary/Keyword: TOC removal

Search Result 217, Processing Time 0.019 seconds

Recent Trend of Ultra-Pure Water Producing Equipment

  • Motomura, Yoshito
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.121-147
    • /
    • 1996
  • Since 1980, the water quality of ultra-pure water has been rapidly improved, and presently ultra-pore water producing equipment for 64Mbit is in operation. Table 1 shows the degree of integration of DRM and required water quality exlmple. The requirements of the ultra-pure water for 64Mbit are resistivity: 18.2 MQ/cm or higher, number of particulates: 1 pc/ml or less (0.05 $\mu$m or larger). bacteria count: 0.1 pc/l or less. TOC (Total Organic Carbon, index of organic snbstance) : 1ppb or less, dissolved oxygen: 5ppb or less, silica: 0.5ppb or less, heavy metal ions: 5ppb or less. The effect of metals on the silicon wafer has been well known, and recently it has been reported that the existence of organic substance in ultra-pure water is closely related to the device defect, drawing attention. It is reported that if organic substance sticks to the natural oxidation film, the oxide film remaims on the organic substance attachment in the hydrofluoric acid treatment (removal of natural oxidation film). The organic substance forms film on the silicon wafer, and harmful elements such as metals and N.P.S., components contained in the organic substance and the bad effect due to the generatinn of silicon carbide cannot be forgotten. In order to remove various impurities in raw water, many technological develoments (membrane, ion exchange, TOC removal, piping material, microanalysis, etc.) have been made with ultra-pure water producing equipment and put to practical use. In this paper, technologies put to practical use in recent ultra-pure vater producing equimeut are introduced.

  • PDF

Inactivation of Microorganisms in Sewage Using a Pilot Plasma Reactor (Pilot 플라즈마 반응기를 이용한 하수 중 미생물의 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.289-299
    • /
    • 2013
  • Objectives: For the field application of the dielectric barrier discharge plasma reactor, scale-up of the plasma reactor is needed. This study investigated the possibility of inactivation of microorganisms in sewage using pilot multi-plasma reactor. We also considered the possibility of degradation of total organic carbon (TOC) and nonbiodegradable matter ($UV_{254}$) in sewage. Methods: The pilot plasma reactor consists of plasma reactor with three plasma modules (discharge electrode and quartz dielectric tube), liquid-gas mixer, high voltage transformers, gas supply equipment and a liquid circulation system. In order to determine the operating conditions of the pilot plasma reactor, we performed experiments on the operation parameters such as gas and liquid flow rate and electric discharge voltage. Results: The experimental results showed that optimum operation conditions for the pilot plasma reactor in batch experiments were 1 L/min air flow rate), 4 L/min liquid circulation rate, and 13 kV electric discharge voltage, respectively. The main operation factor of the pilot plasma process was the high voltage. In continuous operation of the air plasma process, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal condition of 13 kV were $10^{2.24}$ CFU/mL, 56.5% and 8.6%, respectively, while in oxygen plasma process at 10 kV, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal conditions were $10^{1.0}$ CFU/mL, 73.3% and 24.4%, respectively. Electric power was increased exponentially with the increase in high voltage ($R^2$ = 0.9964). Electric power = $0.0492{\times}\exp^{(0.6027{\times}lectric\;discharge\;voltage)}$ Conclusions: Inactivation of microorganisms in sewage effluent using the pilot plasma process was done. The performance of oxygen plasma process was superior to air plasma process. The power consumption of oxygen plasma process was less than that of air plasma process. However, it was considered that the final evaluation of air and oxygen plasma must be evaluated by considering low power consumption, high process performance, operating costs and facility expenses of an oxygen generator.

Evaluation of Oxic Denitrification in A2O Fixed Biofilm System through Mass Balance (물질수지를 이용한 A2O 고정생물막법에서의 호기탈질평가)

  • Yoon, Cho-Hee;Park, Seung-Hwan;Lee, Sang-Hoon;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.231-239
    • /
    • 2000
  • This study was investigated to estimate optimal conditions and biological oxic denitrification to treat wastewater with low C/N ratio and high strength total inorganic nitrogen (TIN) concentration by using $A_2O$ fixed biofilm system. The lab-scale experimental system packed with media, which were composed of polyvinylidene chloride fiber (oxic basin) and ceramic ball (anaerobic and anoxic basin), was used. This system was operated with various influent alkalinities at the C/N(TOC/TIN) ratio of 0.5. The study results showed that TOC were removed over 96.0% at all operation conditions. The removal efficiencies over 93.5% for $NH_4{^+}-N$ and 81.8% for TIN were obtained at the alkalinity of about 1210mg/L(Run 5). Among the removal of TIN, 64.9% was occurred by biological denitrification at an oxic basin. It was confirmed through mass balance of alkalinity and nitrogen that the amount of alkalinity produced during biological denitrification at oxic basin was 2.49~3.46 mg Alkalinity/mg $NO_2{^-}-N$, ${\Delta}TOC/{\Delta}DEN$ of 0.34 (Run 5) was obtained at an oxic basin, which was less than the theoretical value of 1.22.

  • PDF

Effect of Water-Hardness in the Biological Wastewater-treatment (생물학적 폐수처리시 수질 경도에 따른 처리효과 연구)

  • Park Young G.
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.58-64
    • /
    • 2004
  • Biological treatment of wastewater was studied with a purpose to remove TOC by the reduction of water hardness. The optimal conditions of coagulant were determined by reaction time and amount of coagulant. Experimental results indicate that the biological treatment after physico-chemical treatment was found to provide very efficient removal efficiency in the process to treat the textile wastewater, including the carbon dioxide treatment. The combined process of carbonization in the physico-chemical treatment respectively was increased the removal efficiencies of $30.0\%$ in biological treatment in comparison with exclusive biological treatment. As a result, the treatment of hardness after carbonization had the best removal efficiency of approximately $60.0\%$. The removal efficiencies in the exclusive biological treatment using Bacillus subtilis and after carbonization were increased by $38.9\%\;and\;69.0\%$ respectively. The combined Bacillus subtilis-assisted biological treatment was determined to be the most effective method to treat the textile wastewater in an economic point of view, the water quality in the wastewater treatment plays an important role.

The Study on Increase the Decomposition of Organics and Organic Removal Rates by using Sulfate in Sanitary Landfills (황산염을 이용한 매립지 유기물분해 촉진과 분해속도에 관한 연구)

  • Kim, Jeong Gwon;Yun, Tae Gyeong;Kim, Ga Ya
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 2004
  • In this study, sulfate reduction reaction was used to increase the decomposition of organics, which is the most critical factor for the stabilization of a landfill site. Composite of sewage sludge, papers, and incineration ashes was used in the column. The experimental results indicated that out of 10 reactors, the reactors 3, 4, 8. and 9 showed higher organics (i.e., TOC) removal rate than that in the absence of sulfate. The organics removal rates (K) in R3 and R9 were 8.65e$\^$-4/d and 3.82e$\^$-4//d, respectively. The times to reach 10% of initial concentrations in R3 and R9 was 7.3 and 16.5 years, respectively, showing faster organics decomposition rates in these reactors.

A basic study on the reuse of shipboard wastewater(II) -An advanced treatment of shipboard wastewater by Hollow fiber UF and MF filtration- (선박용수의 재사용에 관한 기초연구(II) -중공사모듈 UF MF 필터에 의한 선박폐수의 고도처리-)

  • 김인수;김억조;김동근;고성정;안종수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The Microfiltration and Ultrafiltration were used to treat effluent of secondary municipal wastewater treatment system(Sequencing Batch Reactor). The cross-flow hollow fiber, UF 500,000(NMWC) and MF 0.65$\mu$ membrane were selected as suitable membrane. Short term and long term fouling effect were measured as a factor of flux decrease and the fouling removal effect of mixing air bubble in the penetrant was studied. The removal of anionic sulfactants before and after formation of micelle with several kinds of oil were checked. The test results show that removal of TOC was 70~80%, TN 28% and TP 16%. The decrease of flux due to fouling were 85%(UF) and 90%(MF) after running of 100hrs. The removal of anionic sulfactants were 60~70% notwithstanding micelle or not.

  • PDF

A Pilot Study for Introducing Advanced Water Treatment Facilities at Nakdong River (낙동강수계 고도정수시설 도입을 위한 PILOT 실험 연구)

  • Oh, Se-Won;Choi, Kwong-Ho;Choi, Soo-Il;Son, Seong-Sup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.88-98
    • /
    • 1997
  • To obtain design and operating parameters for advanced water facilities, pilot test consisted of ozonation and GAC filtration was conducted at midstream of Nakdong River. Even though the concentrations were very low, 62 chemicals were detected above $0.005{\mu}g/L$ in raw water. In the preozonation, natural organic matters which could produce THMs and organics such as phenols and amines were effectively removed. The performance of TOC removal of GAC filtration with ozonation was better than GAC filtration alone and adsorption capacity of GAC adsorbers were ranged 3~6mg-TOC/g-carbon. And also the life of GAC adsorber for removing TOC was predicted more than 1 years if ozonation is introduced. This indicates that biological degradation of organics happened in GAC filters. Most organics detected at ppt level were removed below detection limit by GAC filtration with ozonation. These results show that ozonation and GAC filtration are the reliable and safe process for organic contaminants and chlorinated byproducts control at Nakdong River.

  • PDF

Effect of UV Irradiation and TiO2 Addition on the Ozonation of Pyruvic Acid (피루브산의 오존산화반응에 미치는 TiO2 첨가 및 UV 조사의 영향)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • Ozonation was investigated for its ability to remove pyruvic acid in a laboratory-scale batch reactor under various experimental conditions, including UV irradiation, TiO2 addition, and variations in temperature. An ozone flow rate of 1.0 L min-1 and a concentration of 75±5 mg L-1 were maintained throughout the experiment, and pH, COD, and TOC were measured at 10 min intervals during a 60 min reaction. Our results confirmed that the combination of UV irradiation and photocatalytic TiO2 in the ozonation reaction improved the removal efficiency of both COD and TOC in aqueous solution at 20℃. Pseudo first-order rate constants and activation energies were quantified based on the COD and TOC measurements. We observed that the O3/UV, O3/UV/TiO2 system increased mineralization and reduced the activation energy (Ea) necessary for pyruvic acid decomposition.

The behavior characteristics of immobilized sludge in waste water treatment using sequencing batch reactor(SBR). (연속 회분식 반응기를 이용한 폐수처리에서 고정화 슬러지의 거동 특성)

  • 최석순
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.1-7
    • /
    • 1996
  • The behavior of total organic carbon (TOC) and phosphate were observed for 15 days with immobilized activated sludge using polyacrylamide (PAA) by sequencing batch reactor (SBR). In the preparation of immobilized sludge by PAA, it was found that suitable acrylamide concentration for actual wastewater treatment was to be 15% through the batch test. When SBR system was operated in the repeated aerobic and anaerobic conditions, TOC removal efficiency was 92%. The uptake rate of phosphate was increased from 1.78 mg-P/g cell/hr on the 5th day of acclimation to 2.5 mg-P/g cell/hr on the 15th day of acclimation. And the total phosphorus content in PAA bead was increased from 40 mg-P/g cell on the 1st day of operation to 55 mg-P/g cell on the 15th day of operation. From this study, lowering the volume of aeration tank was possible when PAA bead was used in wastewater treatment and long operation was also possible without the settler.

  • PDF

Removal of low concentration organic matter by reverse osmosis membranes in ultrapure water production process (초순수 제조 공정에서 역삼투 막의 저농도 유기물 제거)

  • Lee, Hongju;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.391-396
    • /
    • 2014
  • Ultrapure water (UPW) is water containing nothing but water molecule ($H_2O$). The use of UPW is increasing in many industries such as the thermal and nuclear power plants, petrochemical plants, and semiconductor manufacturers. In order to produce UPW, several unit processes such as ion exchange, reverse osmosis (RO), ultraviolet (UV) oxidation should be efficiently arranged. In particular, RO process should remove not only ions but also low molecular weight (LMW) organic matters in UPW production system. But, the LMW organic matter removal data of RO membranes provided by manufacturers does not seem to be reasonable because they tested the removal in high concentration conditions like 1,000 ppm of isopropyl alcohol (IPA, MW=60.1). In this study, bench-scale experiments were carried out using 4-inches RO modules. IPA was used as a model LMW organic matter with low concentration conditions less than 1 ppm as total organic carbon (TOC). As a result, the IPA removal data by manufacturers turned out to be trustable because the effect of feed concentration on the IPA removal was negligble while the IPA removal efficiency became higher at higher permeate flux.