• Title/Summary/Keyword: TNT 등가량 산정법

Search Result 6, Processing Time 0.023 seconds

Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases (플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Vapor cloud explosions show different characteristics from that caused by ordinary TNT explosives and their loading effect is similar to pressure waves. Typical methods used for blast pressure calculations are the TNT-equivalent method and multi-energy method. The TNT-equivalent method is based on shock waves, similar to a detonation phenomenon, and multi-energy method is based on pressure waves, similar to a deflagration phenomenon. This study was conducted to derive an appropriate blast pressure by applying various plant explosion cases. SDOF analysis and nonlinear dynamic analysis were performed to compare the degree of deformation and damage of the selected structural members for the explosion cases. The results indicated that the multi-energy method was more exact than the TNT-equivalent method in predicting the blast pressure of vapor cloud explosions. The blast pressure of vapor cloud explosion in plants can be more accurately calculated by assuming the charge strength of multi-energy method as 7 or 8.

A Review of TNT Equivalent Method for Evaluating Explosion Energy due to Gas Explosion (가스폭발에 따른 폭발에너지를 평가하기 위한 TNT 등가량 환산방법에 대한 고찰)

  • Kwon, Sangki;Park, Jung-Chan
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.1-13
    • /
    • 2015
  • Accidents related to gas explosion are frequently happened in foreign countries and in Korea. For the evaluation and the analysis of gas explosions, TNT equivalent methods are used. In this study, the influence of the selection of chemical equation in TNT explosion and the selection of enthalpy of the products on the explosion energy, detonation pressure, velocity of detonation, and temperature was calculated. Depending on the chemical equations, the maximum detonation pressure can be 2 times higher than the minimum. As an example for applying TNT equivalent method, an explosion of methane gas in a confined volume was assumed. With the TNT equivalent, it was possible to predict the variation of peak overpressure and impulse with the distance from the explosion location.

Calculation of the TNT Equivalent Mass of the Possible Explosion of CO, CH4, and C2H4 (CO와 CH4, C2H4 혼합 가스 폭발에 대한 TNT 등가량 계산)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • Gas explosion accidents are steadily being issued due to increased gas consumption in Korea and foreign countries. To analyze the effects of these gas explosions, a TNT equivalent method is used. In this study, the TNT equivalent was calculated in the event of an explosion due to the volume content in the air of CO, CH4 and C2H4, the typical flammable gases emitted by coal. Also, the peak overpressure and impulse variation with the distance from explosion point were compared and analyzed by gas using the calculated equivalent value of TNT. The upper limit of the TNT equivalent for the three mixed gases is up to five times larger than the other gases mixture. In addition, the peak overpressure and impulse, which are factors of the TNT characteristic curve, are also increasing as the number of gases increases.

A Review of the Methods for the Estimation of the Explosion Parameters for Gas Explosions (가스 폭발에 따른 폭발 인자 추정을 위한 방법 고찰)

  • Minju Kim;Jeewon Lee;Sangki Kwon
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.73-92
    • /
    • 2023
  • With the increase of risk of gas explosion, various methods for indirectly estimating the explosion paramaters, which are required for the prediction of gas explosion scale and impact. In this study, the characteristics of the most frequently used methods such as TNT equivalent method, TNO multi-energy method, and BST method and the processes for determining the parameters of the methods were compared. In the case of TNT equivalent method, an adequate selection of the efficiency factor for various conditions such as the type of vapor cloud explosion and explosion material is needed. There is no objective guidelines for the selection of class number in TNO multi-energy method and it is not possible to estimate negative overpressure. It was found that there were some mistakes in the reported parameter values and suggested corrected values. BST method provides more detailed guidelines for the estimation of the explosion parameters including negative overpressure, but the graphs used in this methods are not clear. In order to overcome the problem, the graphs were redrawn. A more convenient estimation of explosion parameters with the numerical expression of the redrawn graphs will be available in the future.

Improvement of Charge Strength Guideline for Multi-Energy Method by Comparing Vapor Cloud Explosion Cases (증기운 폭발 사례 비교를 통한 멀티에너지법의 폭발강도계수 지침 개선)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.355-362
    • /
    • 2021
  • Various blast pressure calculation methods have been developed for predicting the explosion pressure of vapor cloud explosions. Empirical methods include the TNT equivalent method, and multi-energy method. The multi-energy method uses a charge strength that considers environmental factors. Although the Kinsella guideline was provided to determine the charge strength, there are limitations such as guidelines related to ignition sources. In this study, we proposed an improved charge strength guideline, by subdividing the ignition source intensity and expanding the type classification through literature analysis. To verify the improved charge strength guideline, and to compare it with the result obtained using the Kinsella guideline, four vapor cloud explosion cases which could be used to estimate the actual blast pressure were investigated. As a result, it was confirmed that the Kinsella guidelines showed an inaccurate, that is, wider pressure than the actual estimated blast pressure. However, the improved charge strength guideline enabled the selection of the intensity of the ignition source, and more subdivided types through the expansion of classification, hence it was possible to calculate the blast pressure relatively close to that of the actual case.

An Evaluation of the Impact of Ammonium Nitrate Explosion Occurred in Beirut Port (베이루트항에서 발생한 질산암모늄 폭발에 의한 영향 평가)

  • Yong-Kyun Yoon
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • On August 4, 2020, 2750 tons of ammonium nitrate stored in a storage warehouse at the Port of Beirut exploded. This explosion is said to be the largest ammonium nitrate explosion ever. By applying the TNT equivalency method, TNT equivalent amount corresponding to the explosion energy of 2750 tons of ammonium nitrate was calculated, and it is found to be 856 tons. Overpressure and impulse were calculated in a range up to 3600 m from the blast using the Kingery-Bulmash explosion parameter calculator tool. As the distance from the explosion center increases, the overpressure and impulse decrease exponentially, but the overpressure decreases more significantly, showing that overpressure is more affected by distance than the impact. As a result of applying the damage criteria to evaluate the effects of overpressure and impulse on the structure, the critical distances at which partial collapse, major damage, and minor damage to the structure occur are found to be approximately 500, 800, and 2200 m from the center of the explosion, respectively. The probit function was applied to evaluate the probability of damage to structures and human body. The points where the probability of collapse, major damage, minor damage, and breakage of window-panes to structures are greater than 50% are found to be approximately 500, 810, 2200, and 3200 m, respectively. For people within 200 m from the center of the explosion, the probability of death due to lung damage is more than 99%, and the 50% probability of eardrum rupture is approximately 300 m. The points with a 100% probability of death due to skull rupture and whole body impact due to whole body displacement are evaluated to be 300 and 100 m, respectively.