• Title/Summary/Keyword: TNT(Trinitrotoluene)

Search Result 69, Processing Time 0.033 seconds

Development of Analytical Methods for Micro Levels of Naphthalene and TNT in Groundwater by HPLC-FLD and MSD (HPLC-FLD와 MSD를 이용한 지하수 중 나프탈렌 및 TNT의 미량 분석법 개발)

  • Park, Jong-Sung;Oh, Je-Ill;Jeong, Sang-Jo;Choi, Yoon-Dae;Her, Nam-Guk
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.35-44
    • /
    • 2009
  • Naphthalene and TNT (2,4,6-trinitrotoluene) are defined by U.S. EPA as possible carcinogenic compounds known to have detrimental effects on the aquatic ecosystem and human body. There are, however, few researches on methods of analyzing micro-levels of naphthalene and TNT dissolved in groundwater. This study introduces and evaluates the newly developed analytical methods of measuring naphthalene and TNT in groundwater by using HPLC-FLD (Fluorescence detector) and MSD (Mass detector). The MDL, LOQ and salt effect of these methods, respectively, are compared with those of conventional methods which use HPLC-UV. For the analysis of naphthalene, HPLC-FLD was set in the maxima wavelength (Ex: 270 nM, Em: 330 nM) obtained from 3D-Fluorescence to be compared with HPLC-UV in 266 nM wavelength. The MDL ($0.3\;{\mu}g/L$) and LOQ ($2.0\;{\mu}g/L$) of naphthalene by using HPLC-FLD were approximately 80 times lower than those analyzed by HPLC-UV (MDL: $23.3\;{\mu}g/L$, LOQ: $163.1\;{\mu}g/L$). HPLC-MSD were used in comparison with HPLC-UV in 230 and 254 nM wavelength for the analysis of TNT. The MDL ($0.13\;{\mu}g/L$) and LOQ ($0.88\;{\mu}g/L$) of TNT analyzed by using HPLC-MSD were approximately 130 times lower than those obtained by using HPLC-UV in 230 nM (MDL: $16.8\;{\mu}g/L$, LOQ: $117.5\;{\mu}g/L$). The chromatogram of TNT analyzed by using HPLC-UV in 230 nM displayed elevated baseline as the concentration of ${NO_3}^-$ increases beyond 21 mg/L, while the analysis using HPLC-MSD did not demonstrate any change in baseline in presence of ${NO_3}^-$ of 63.7 mg/L which is 3.5 times higher than average concentration in groundwater. In conclusion, HPLC-FLD and HPLC-MSD may be used as suitable methods for the analysis of naphthalene and TNT in groundwater and drinking water. These methods can be applied to the monitoring of naphthalene and TNT concentration in groundwater or drinking water.

Risk Evaluation of Monopotassium Phosphate (MKP) and Bentonite Application via the Mobility Reduction of Soil TNT and Heavy Metals (제일인산칼륨과 벤토나이트 처리를 통한 토양 내 TNT와 중금속 이동성 및 인체위해도 저감 기술)

  • Jung, Jae-Woong;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.28-36
    • /
    • 2015
  • Simultaneous mobility reduction of explosives and heavy metals in an operational range by monopotassium phosphate (MKP) and bentonite spreading technology was investigated. Potassium ion and phosphate ion in MKP act as explosives sorption enhancer and insoluble heavy metal phosphate formation, respectively, while bentonite acts as the explosives adsorbent. Then, the decrease in surface water concentration of the pollutants and resulting risk reduction for local residents of the operational range, by MKP/bentonite application was estimated. Under untreated scenario, the noncancer hazard index (HI) exceeded unity on February, July and August, mainly due to 2,4,6-trinitrotoluene (TNT); however, MKP/bentonite treatment was expected to lower the noncancer hazard index by decreasing the surface water concentration of explosives and heavy metals (especially TNT). For example, on July, estimated surface water concentration and HI of TNT were 0.01 mg/L and 1.1, respectively, meanwhile the sorption coefficient of TNT was 3.9 mg1−nkg−1Ln. However, by MKP/bentonite treatment, the TNT sorption coefficient increased to 113.8 mg1−nkg−1Ln and the surface water concentration and HI decreased to about 0.002 mg/L and 0.2, respectively. Based on the result, it can be concluded that MKP/bentonite spreading is a benign technology that can mitigate the risk posed by the pollutants migration from operational ranges.

Characterization of NAD(P)H-nitroreductase Purified from the TNT-degrading Bacterium, Stenotrophomonas sp. OK-5 (폭약 TNT 분해세균 Stenotrophomonas sp. OK-5에서 분리된 NAD(P)H-nitroreductase의 정제 및 특성 연구)

  • Ho, Eun-Mi;Cheon, Jae-U;Gang, Hyeong-Il;O, Gye-Heon
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • The purpose of this work was to perform the characterization of NAD(P)H-nitroreductase isolated from Stenotrophomonas sp. OK-5 capable of degrading 2,4,6-trinitrotoluene (TNT). Initially, NADP(H)-nitroreductase by a series of purification processes including ammonium sulfate precipitation, DEAE-sepharose, andQ-sepharose was prepared. From samples harvested from fraction collector, three different fractions (I, II & III)having the enzyme activity of NAD(P)H-itroreductase were detected. Specific activities of three fractions I, II,and III of NAD(P)H-nitroreductase were determined to approximately 5.06 unit/mg, 4.95 unit/mg and 4.86 unit/mg, and concentrated to 10.5, 9.8, and 8.9-fold compared to crude extract, respectively. Among these three fractions,the fraction I of NAD(P)H-nitroreductase demonstrated the highest specific activity in this experiment. Several factors affecting on the enzyme activity of NAD(P)H-nitroreductase (fractions I, II & III) were investigated.The optimum temperature of all NAD(P)H-nitroreductase (fractions I, II & III) was 30oC, and the optimal pH was approximately 7.5. Metal ions such as Ag+, Cu2+, Hg2+ inhibited approximately 80% enzyme activity of all NAD(P)H-nitroreductase, and the enzyme activities were decreased about 30-40% inhibition in the presence of Mn2+ or Ca2+. However, Fe3+ showed stimulatory effect on the enzyme activity. The molecular weights of NAD(P)H-nitroreductase (fractions I, II & III) were measured about 27 kDa on the SDS-PAGE.

A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure (지하 수소인프라 폭발에 따른 인접 구조물 영향 분석에 대한 기초 연구)

  • Choi, Hyun-Jun;Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2022
  • For carbon neutrality, interest in R&D and infrastructure construction for hydrogen energy, an eco-friendly energy source, is growing worldwide. In particular, for hydrogen stations installed in downtown areas, underground hydrogen infrastructure are being considered to increase a safety distance from hydrogen tank explosions to adjacent structures. In order to design an appropriate location and depth of the underground hydrogen infrastructure, it is necessary to evaluate the impact of the explosion of the underground hydrogen infrastructure on adjacent structures. In this paper, a numerical model was developed to analyze the effect of the underground hydrogen infrastructure explosion on adjacent structures, and the over pressure of the hydrogen tank was evaluated using the equivalent TNT (Trinitrotoluene) model. In addition, parametric analysis was performed to estimate the stability of adjacent structures according to the construction conditions of the underground hydrogen infrastructure.

Determination of Optimum Operating Parameters for Enhanced Alkaline Hydrolysis of Soils Contaminated with TNT (TNT 오염토의 염기성 가수분해 효율 향상을 위한 최적 운전인자 도출)

  • Lee, Hwan;Choi, Jae-Heon;Lee, Cheol-Hyo;Kim, Ju-Yup
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.103-110
    • /
    • 2015
  • Nitro-aromatic Compounds (NACs) of explosives are structurally non-degradable materials that have an adverse effect to humans and ecosystems in case of emissions in natural due to the strong toxicity. In this study, batch test in the laboratory-scale has been conducted to find some process parameters of alkaline hydrolysis by considering the characteristics of NACs which are unstable in a base status and field application evaluation have been performed on the batch test results. Based on the experimental results of both laboratory and pilot-scale test, the optimum conditions of parameters for the alkaline hydrolysis of soils contaminated with explosives were pH 12.5, above the solid-liquid ratio 1 : 3, above the room temperature and 30 minute reaction time. In these four process parameters, the most important influencing factor was pH, and the condition of above pH 12.0 was necessary for high contaminated soils (more than 60 mg/kg). In the case of above pH 12.5, the efficiency of alkaline hydrolysis was very high regardless of the concentrations of contaminated soils. At pH 11.5, the removal efficiency of TNT was increased from 76.5% to 97.5% when the temperature in reactor was elevated from room temperature to 80℃. This result shows that it is possible to operate the alkaline hydrolysis at even pH 11.5 due to increased reaction rate depending on temperature adjustment. The results found in above experiments will be able to be used in alkaline hydrolysis for process improvement considering the economy.

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin $B_{12}$, on the reduction rate of Tn by $Fe^0$ was quantitatively analyzed using a batch reactor In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator) , vitamin $B_{12}$, has augmented besides $Fe^0$. In the presence of 8.0 $mu\textrm{g}$/L of vitamin $B_{12}$, the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin $B_{12}$ can be a promising rate controlling option for the removal of organics using a $Fe^0$ filled permeable reactive barrier.

  • PDF

Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer

  • Park, Sehwan;Lee, Jihyeon;Cho, Soo Gyeong;Goh, Eun Mee;Lee, Sungman;Koh, Sung-Suk;Kim, Jeongkwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3659-3664
    • /
    • 2013
  • Eight representative explosives (ammonium perchlorate (AP), ammonium nitrate (AN), trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), cyclonite (RDX), cyclotetramethylenetetranitramine (HMX), pentaerythritol tetranitrate (PETN), and hexanitrostilbene (HNS)) were comprehensively analyzed with an ion trap mass spectrometer in negative ion mode using direct infusion electrospray ionization. MS/MS experiments were performed to generate fragment ions from the major parent ion of each explosive. Explosives in salt forms such as AP or AN provided cluster parent ions with their own anions. Explosives with an aromatic ring were observed as either $[M-H]^-$ for TNT and DNT or $[M]^{{\cdot}-}$ for HNS, while explosives without an aromatic ring such as RDX, HMX, and PETN were detected as an adduct ion with a formate anion, i.e., $[M+HCOO]^-$. These findings provide a guideline for the rapid and accurate detection of explosives once portable MS instruments become more readily available.

TNT and Nutrients Removal in the Constructed Wetlands

  • Park, Jong-Kyu;Kim, Se-Kyoung;Song, Keun-Yea;Kang, Su-Jin;Kim, Tak-Soo;Kang, Ho-Jeong;Zoh, Kyung-Duk
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.199-203
    • /
    • 2003
  • This study was carried out to investigate the removal of 2,4,6-trinitrotoluene, nutrients such as nitrogen, phosphorous compounds in the wetland microcosms. Microcosm study indicated that TNT nutrients were more lastly reduced in the anaerobic condition. The major reductive transformation products included 2,4diamino-6-nitrotoluene (2,4-DANT) 2,6diamino-4-nitrotoluene (2,6-DANT) 4diamino-2,6-nitrotoluene (4-ADNT) 2diamino-4,6-nitrotoluene (2-ADNT). The experimental results for nitrogen removal showed that denitrification kom NO$\sub$3//$\^$-/ to NH$_3$ was dominant process at the bottom of marsh, but nitrification from NH$_3$ to NO$\sub$3//$\^$-/ was dominant on the top of marsh.

  • PDF

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • Hashimoto, Gaku;Noguchi, Hirohisa
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.251-278
    • /
    • 2008
  • In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.