• Title/Summary/Keyword: TNO multi-energy

Search Result 5, Processing Time 0.016 seconds

A Review of the Different Models for Predicting Blast Overpressures Caused by Vapor Cloud Explosions (증기운 폭발에 의해 발생된 폭풍 과압 예측 모델 검토)

  • Park Dal Jae;Lee Young Soon;Lim Young Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.50-57
    • /
    • 2000
  • Past accidents have shown that vapor cloud explosions are the predominant cause of the largest losses in the chemical and petrochemical industries due to the generation of significant overpressures. Prediction of such overpressure is of great concern and a knowledge of the likely overpressure is needed for the design of equipment, safety cases and emergency planning. For these reasons, risk assessment for vapor cloud explosion is crucial and this assessment can be carried out using the different models including TNT-Equivalency, TNO Hemispherical, TNO Multi-Energy and CFD models. Accordingly, in this paper, the published VCE prediction models are reviewed to provide a critical comparison of the different models used for the quantification of explosion hazards, in terms of the fundamental assumptions employed, and their predictive accuracy

  • PDF

A Review of the Methods for the Estimation of the Explosion Parameters for Gas Explosions (가스 폭발에 따른 폭발 인자 추정을 위한 방법 고찰)

  • Minju Kim;Jeewon Lee;Sangki Kwon
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.73-92
    • /
    • 2023
  • With the increase of risk of gas explosion, various methods for indirectly estimating the explosion paramaters, which are required for the prediction of gas explosion scale and impact. In this study, the characteristics of the most frequently used methods such as TNT equivalent method, TNO multi-energy method, and BST method and the processes for determining the parameters of the methods were compared. In the case of TNT equivalent method, an adequate selection of the efficiency factor for various conditions such as the type of vapor cloud explosion and explosion material is needed. There is no objective guidelines for the selection of class number in TNO multi-energy method and it is not possible to estimate negative overpressure. It was found that there were some mistakes in the reported parameter values and suggested corrected values. BST method provides more detailed guidelines for the estimation of the explosion parameters including negative overpressure, but the graphs used in this methods are not clear. In order to overcome the problem, the graphs were redrawn. A more convenient estimation of explosion parameters with the numerical expression of the redrawn graphs will be available in the future.

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.

Experimental and Analytical Study on Hydrogen-air Deflagrations in Open Atmosphere (개방 공간에서 발생하는 수소-공기 혼합 가스 폭연에 대한 실험적/해석적 연구)

  • Kim, Yangkyun;Park, Byoung Jik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Experimental and analytical investigations are performed to explore the explosion characteristics of a hydrogen-air mixture in open atmosphere. A hydrogen-air mixture tent of total volume of 27 m3, with 40% hydrogen volume, is used to observe overpressure at a distance from the ignition source. Vapor cloud explosion analyses are performed using the TNO multi-energy model and Baker-Strehlow-Tang model. The results of these analyses are compared with experiment done from this study and references. The experimental results with and without obstacles indicate that the overpressure values measured at a distance of 4.5-21.5 m from the ignition source are about 9.4-3.6 kPa and 6.5-2 kPa, respectively. This implies that the overpressure with obstacles is approximately 1.7 times greater than that without obstacles. Analytical observation indicates that the results obtained with the Baker-Strehlow-Tang model with Mf = 0.2-0.35 are in good agreement with those of most of the previous studies, including that obtained from this study. Moreover, the TNO multi-energy model with a volume of 27 m3 well predicts the overpressure obtained from this study. Further studies should considered explosions in semi-confined spaces, which is more suitable for hydrogen refueling stations.

A Study on the Prediction of City Gas Accident Damage by Consequence Analysis (Consequence Analysis를 통한 도시가스 사고 피해 예측에 관한 연구)

  • An, Jung-sik;Kim, Jihye;Yu, Jihoon;Kim, Jongkyoung;Kang, Subi;Cho, Donghyun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.36-40
    • /
    • 2022
  • Recently, the biggest topic in the industry is the area of industrial safety and health management. Since city gas is flammable gas and has a high risk of fire and explosion, much effort is required to prevent serious industrial and citizenry disasters. As part of city gas safety management, this study attempted to quantitatively predict the scope and degree of damage in the event of an explosion accident caused by city gas leakage through the Consequence Analysis. As a result, there was a difference in the accident result value according to various leakage conditions such as pressure and weather conditions. Through this study, a scenario of explosion due to city gas leakage will be prepared when performing city gas safety management work and used to prepare more effective accident prevention and emergency action plans.