• Title/Summary/Keyword: TNFR1 receptor

Search Result 25, Processing Time 0.02 seconds

Biological Activity of Tumor Necrosis Factor-α Secreted from Smooth Muscle Cell Overexpressing FADD (FADD 과발현 평활근세포에서 분비하는 Turner Necrosis Factor-α의 작용)

  • Kim, Sun-Mi;Lee, Kyeong-Ah;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.45-50
    • /
    • 2007
  • This study investigated biological activity of tumor necrosis factor $(TNF)-\alpha$ secreted from smooth muscle cell (SMC) destined for death by expressing Fas associated death domain containing protein (FADD) (FADD-SMC) when the cells are grown without tetracycline in culture medium. In the absence of tetracycline the FADD-SMC secreted approximately 1000 pg/ml $TNF-\alpha$, whereas hardly detectable amount of the cytokine existed in the presence of tetracycline. The culture medium collected from the FADD-SMC grown in the absence of tetracycline increased phosphorylated form of p38 MAPK and up-regulated nuclear factor kappa B (NF-kB). The medium collected without tetracycline also caused death of L929 cells. Depletion of $TNF-\alpha$ with the soluble TNF receptor (sTNFR) inhibited the phosphorylation of p38 MAPK, the up-regulation of NF-kB activity and the death activity of the medium collected from FADD-SMC in the absence of tetracycline. These results indicate that $TNF-\alpha$ secreted from SMC undergoing death is biologically active and can affect cellular function.

Snake Venom synergized Cytotoxic Effect of Natural Killer Cells on NCI H358 Human Lung Cancer Cell Growth through Induction of Apoptosis

  • Oh, Jae Woo;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.33 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives : I investigated whether snake venom can synergistically strengthen the cytotoxic effects of NK-92 cells, and enhance the inhibition of the growth of lung cancer cells including NCI-H358 through the induction of death receptor dependent extrinsic apoptosis. Methods : Snake venom toxin inhibited cell growth of NCI-H358 Cells and exerted non influence on NK-92 cell viability. Moreover, when they were co-cultured with NK cells and concomitantly treated with $4{\mu}g/m{\ell}$ of snake venom toxin, more influence was exerted on the inhibition of growth of NCI-H358 cells than BV or NK cell co-culture alone. Results : The expression of Fas, TNFR2 and DR3 and in NCI-H358 lung cancer cells was significantly increased by co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells alone. Coincidentally, Bax, caspase-3 and caspase-8 - expressions of pro-apoptotic proteins in the extrinsic apoptosis pathway, demonstrated significant increase. However, in anti-apoptotic NF-${\kappa}B$ activities, activity of the signal molecule was significantly decreased by co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells or snake venom toxin treated by NCIH358 alone. Meanwhile, in terms of NO generation, there is a significant increase, in co-culture of NK-92 cells with NCI-H358 cells as well as the co-culture of NK-92 cells and concomitant treatment of $4{\mu}g/m{\ell}$ of snake venom toxin. However, no synergistic increase of NO generation was shown in co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells with NCI-H358 cells. Conclusion : Consequently, this data provides that snake venom toxin could be useful candidate compounds to suppress lung cancer growth along with the cytotoxic effect of NK-92 cells through extrinsic apoptosis.

Alloimmune and Skin Allograft Responses In 4-1BB (CD137)-deficient Mice

  • Wolisi, Godwin;Srirangam, Anjaiah;Vinay, Dass S.;Suh, Jae H.;Suh, Ho-Seok;Choi, Beom K.;Kwon, Byoung S.
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.133-136
    • /
    • 2002
  • Background: The costimulatory molecule 4-1BB, a member of nerve growth factor receptor/tumor necrosis factor (NGFR/TNFR) super family, is involved in cell survival and death. Methods: In this study, female C57BL/6 ($H-2^b$) mice were used as a recipient, and DBA/2 ($H-2^d$) as a donor to assess a mixed lymphocyte reaction (MLR) and CTL response in vitro, and skin graft survival. IL-2, IFN level was measured by ELISA. Results: Mixed lymphocyte reaction (MLR) analysis showed that 4-1BB-deficient responder cells showed enhanced cellular proliferation over littermate controls. In contrast, IL-2 production was diminished only in 4-1BB knockout cultures. The IFN expression, on the other hand, was comparable between the groups. When female C57BL/6 ($H-2^b$) mice were grafted with the trunk skin of DBA/2 ($H-2^d$) mice, the in vivo tissue destruction of 4-1BB-deficient mice was not distinct from the normal littermates. Conclusion: These data suggest that 4-1BB is critical for the induction of alloreactive responses in vitro but 4-1BB alone could not change the course of skin rejection in vivo.

Curcumin Attenuates Radiation-Induced Inflammation and Fibrosis in Rat Lungs

  • Cho, Yu Ji;Yi, Chin Ok;Jeon, Byeong Tak;Jeong, Yi Yeong;Kang, Gi Mun;Lee, Jung Eun;Roh, Gu Seob;Lee, Jong Deog
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2013
  • A beneficial radioprotective agent has been used to treat the radiation-induced lung injury. This study was performed to investigate whether curcumin, which is known to have anti-inflammatory and antioxidant properties, could ameliorate radiation-induced pulmonary inflammation and fibrosis in irradiated lungs. Rats were given daily doses of intragastric curcumin (200 mg/kg) prior to a single irradiation and for 8 weeks after radiation. Histopathologic findings demonstrated that macrophage accumulation, interstitial edema, alveolar septal thickness, perivascular fibrosis, and collapse in radiation-treated lungs were inhibited by curcumin administration. Radiation-induced transforming growth factor-${\beta}1$ (TGF-${\beta}1$), connective tissue growth factor (CTGF) expression, and collagen accumulation were also inhibited by curcumin. Moreover, western blot analysis revealed that curcumin lowered radiation-induced increases of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), TNF receptor 1 (TNFR1), and cyclooxygenase-2 (COX-2). Curcumin also inhibited the nuclear translocation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) p65 in radiation-treated lungs. These results indicate that long-term curcumin administration may reduce lung inflammation and fibrosis caused by radiation treatment.

Snake Venom-enhanced Cytotoxic Effect of Natural Killer Cells on A549 Human Lung Cancer Cell Growth (사독의 인체 폐암세포(A549)에 대한 Natural Killer 세포 세포독성 촉진 효과)

  • Lee, Ji In;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.79-88
    • /
    • 2015
  • Objectives : The purpose of this research was to investigate the cytotoxic effect of Natural Killer(NK)-92 cell and Snake Venom, and to elucidate its mechanism on human lung carcinoma cell A549. Methods : In order to figure out whether Snake Venom enhances the cytotoxic effect of NK-92 cell in A549 cell, Cell Viability Assay was conducted. Also, in order to observe the changes of Caspase-3 and Caspase-8, both of which are proteinases that advance apoptosis, and the changes of TNRF and DR3, which are Death Receptors of the extrinsic pathway of apoptosis, Western Blot Analysis was conducted. By conducting RT-PCR analysis, we have tried to confirm Perforin, Granzyme B, and GADPH, all of which are cytotoxic-related proteins. Lastly, in order to observe the effect of Snake Venom on NO formation within human lung carcinoma cells, NO determination was conducted. Results : 1. After conducting Cell Viability Assay, Snake Venom enhanced the cytotoxic effect of NK-92 cell and inhibited the growth of A549. 2. Western Blot Analysis caused proteinases Caspase-3 and Caspase-8, which advance apoptosis, to increase in the combined treatment group, but not in treatment groups that focused only on either Snake Venom or NK-92 cell in A549 lung carcinoma cells. 3. Western Blot Analysis caused an expression of TNFR2 and DR3, both of which are Death Receptors of the apoptosis extrinsic pathway, in the combined treatment group, but not intreatment groups that focused only on either Snake Venom or NK-92 cell in A549 human lung carcinoma cells. 4. After conducting NO determination, NO formation within A549 cell showed no significant changes in both treatment groups that focused NK-92 cell and combined treatment group. 5. After conducting RT-PCR, the expression of Granzyme B and Perforin, which are cytotoxic-related proteins within A549 human lung carcinoma cells, showed growth in the combined treatment group, but not the treatment group that focused only on NK-92 cell. Conclusion : It has been indicated that, when it comes to the A549 cell, Snake Venom enhances the increase of Death Receptor expression and continuous apoptosis reaction, leading to the enhancement of the cancer cell cytotoxic effect of the NK-92 cell. It is expected that Snake Venom can be used with the NK-92 cell for further lung cancer treatment.