• Title/Summary/Keyword: TNF-related apoptosis-inducing ligand

Search Result 29, Processing Time 0.024 seconds

IRF-1-mediated IFN-γ enhancement of TRAIL-induced apoptosis (TRAIL 유도 세포사멸에 있어서 IFN-γ의한 증가 기전 연구: IRF-1과의 관련성)

  • Park, Sang-Youel;Seol, Jae-Won;Lee, You-Jin;Kang, Seog-Jin;Kim, In-shik;Kang, Hyung-sub;Chae, Joon-seok;Cho, Jong-Hoo
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family and potent inducer of apoptosis. TRAIL has been shown to effectively limit tumor growth in vivo without detectable cytotoxic side effects. Interferon (IFN)-${\gamma}$ often modulates the anti-cancer activities of TNF family members including TRAIL. We previously reported that IFN-${\gamma}$ enhanced TRAIL-induced Apoptosis in HeLa cells without the unknown mechanism. In this study, we investigated whether IRF-1 involves in IFN-${\gamma}$-enhanced TRAIL-induced apoptosis. We exposed HeLa cells to IFN-${\gamma}$ for 12 hours and then treated with recombinant TRAIL protein. No apoptosis was induced in cells pretreated with IFN-${\gamma}$, and TRAIL only induced 30% apoptosis after 3 hours treatment. In HeLa cells pretreated with IFN-${\gamma}$, TRAIL induced cell death to more than 75% at 3 hours, showed that IFN-${\gamma}$-pretreatment enhanced HeLa cell death to TRAIL-induced apoptosis. To investigate the functional role of IRF-1 in IFN-${\gamma}$-enhanced TRAIL-induced apoptosis, IRF-1 was overexpressed by using an adenoviral vector AdIRF-1. IRF-1 overexpression increased apoptotic cell death and significantly enhanced apoptotic cell death induced by TRAIL when infected cells were treated with TRAIL. Our findings show that IFN-${\gamma}$ enhances TRAIL-induced apoptosis by IRF-1 in HeLa cells.

Inhibition of Transient Receptor Potential Melastain 7 Enhances Apoptosis Induced by TRAIL in PC-3 cells

  • Lin, Chang-Ming;Ma, Ji-Min;Zhang, Li;Hao, Zong-Yao;Zhou, Jun;Zhou, Zhen-Yu;Shi, Hao-Qiang;Zhang, Yi-Fei;Shao, En-Ming;Liang, Chao-Zhao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4469-4475
    • /
    • 2015
  • Transient receptor potential melastain 7 (TRPM7) is a bifunctional protein with dual structure of both ion channel and protein kinase, participating in a wide variety of diseases including cancer. Recent researches have reported the mechanism of TRPM7 in human cancers. However, the correlation between TRPM7 and prostate cancer (PCa) has not been well studied. The objective of this study was to investigate the potential the role of TRPM7 in the apoptosis of PC-3 cells, which is the key cell of advanced metastatic PCa. In this study, we demonstrated the influence and potential function of TRPM7 on the PC-3 cells apoptosis induced by TNF-related apoptosis inducing-ligand (TRAIL). The study also found a novel up-regulated expression of TRPM7 in PC-3 cells after treating with TRAIL. Suppression of TRPM7 by TRPM7 non-specific inhibitors ($Gd^{3+}$ or 2-aminoethoxy diphenylborate (2-APB) ) not only markedly eliminated TRPM7 expression level, but also increased the apoptosis of TRAIL-treated PC-3 cells, which may be regulated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway accompany with up-regulated expression of cleaved Caspase-3, (TRAIL-receptor 1, death receptors 4) DR4, and (TRAIL-receptor 2, death receptors 5) DR5. Taken together, our findings strongly suggested that TRPM7 was involved in the apoptosis of PC-3 cells induced by TRAIL, indicating that TRPM7 may be applied as a therapeutic target for PCa.

Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells (인체 방광암세포에서 histone deacetylase 억제제인 sodium butyrate이 TRAIL에 의한 apoptosis 유도에 미치는 영향)

  • Han, Min-Ho;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • The tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer agent due to its unique ability to induce cancer cell death having only negligible effects on normal cells. However, many cancer cells tend to be resistant to TRAIL. In this study, we investigated the effects and molecular mechanisms of sodium butyrate (SB), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in 5637 human bladder cancer cells. Our results indicated that co-treatment with SB and TRAIL significantly increased the apoptosis induction, compared with treatment with either agent alone. Co-treatment with SB and TRAIL effectively increased the cell-surface expression of death receptor (DR) 5, but not DR4, which was associated with the inhibition of cellular Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP). Furthermore, the activation of caspases (caspase-3, -8 and -9) and degradation of poly(ADP-ribose) were markedly increased in 5637 cells co-treated with SB and TRAIL; however, the synergistic effect was perfectly attenuated by caspase inhibitors. We also found that combined treatment with SB and TRAIL effectively induced the expression of pro-apoptotic Bax, cytosolic cytochrome c and cleave Bid to truncated Bid (tBid), along with down-regulation of anti-apoptotic Bcl-xL expression. These results collectively suggest that a combined regimen of SB plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating TRAIL-resistant bladder cancer cells.

Quercetin Potentiates TRAIL-induced Apoptosis in Human Colon KM12 Cells (사람 대장암 KMl2세포에서 quercetin 의한 TRAIL이 유도하는 세포사멸의 증가)

  • Park, Jun-Ik;Kim, Hak-Bong;Kim, Mi-Ju;Lee, Jae-Won;Bae, Jae-Ho;Park, Soo-Jung;Kim, Dong-Wan;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1209-1217
    • /
    • 2009
  • Many cancer cells are sensitive to the TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, some cancer cells show either partial or complete resistance to TRAIL. Human colon carcinoma KM12 cells have been shown to be insensitive to TRAIL-induced apoptosis. To overcome TRAIL resistance in KM12 cells, we targeted key anti-apoptotic molecules involved in the modulation of TRAIL resistance in the cells, and evaluated the effects of quercetin as a TRAIL sensitizer in the cells. We found that quercetin acted in synergy with TRAIL to enhance TRAIL-induced apoptosis in KM12 cells by the down-regulation of c-FLIP and DNA-PKcs/Akt and up-regulation of death receptors (DR4/DR5), which led to the enhancement of TRAIL-mediated activation of caspases and subsequent cleavage of PARP, as well as up-regulation of Bax. These findings suggest that the DNA-PKcs/Akt signaling pathway, as well as c-FLIP, play essential roles in regulating cells in the escape from TRAIL-induced apoptosis. Based on these results, this study provides a potential application of quercetin in combination with TRAIL in the treatment of human colon cancer.

Role of Tumor Necrosis Factor-Producing Mesenchymal Stem Cells on Apoptosis of Chronic B-lymphocytic Tumor Cells Resistant to Fludarabine-based Chemotherapy

  • Valizadeh, Armita;Ahmadzadeh, Ahmad;Saki, Ghasem;Khodadadi, Ali;Teimoori, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8533-8539
    • /
    • 2016
  • Background: B-cell chronic lymphocytic leukemia B (B-CLL), the most common type of leukemia, may be caused by apoptosis deficiency in the body. Adipose tissue-derived mesenchymal stem cells (AD-MSCs) as providers of pro-apoptotic molecules such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), can be considered as an effective anti-cancer therapy candidate. Therefore, in this study we assessed the role of tumor necrosis factor-producing mesenchymal stem cells oin apoptosis of B-CLL cells resistant to fludarabine-based chemotherapy. Materials and Methods: In this study, after isolation and culture of AD-MSCs, a lentiviral LeGO-iG2-TRAIL-GFP vector containing a gene producing the ligand pro-apoptotic with plasmid PsPAX2 and PMDG2 virus were transfected into cell-lines to generate T293HEK. Then, T293HEK cell supernatant containing the virus produced after 48 and 72 hours was collected, and these viruses were transduced to reprogram AD-MSCs. Apoptosis rates were separately studied in four groups: group 1, AD-MSCs-TRAIL; group 2, AD-MSCs-GFP; group 3, AD-MSCs; and group 4, CLL. Results: Observed apoptosis rates were: group 1, $42{\pm}1.04%$; group 2, $21{\pm}0.57%$; group 3, $19{\pm}2.6%$; and group 4, % $0.01{\pm}0.01$. The highest rate of apoptosis thus occurred ingroup 1 (transduced TRAIL encoding vector). In this group, the average medium-soluble TRAIL was 72.7pg/m and flow cytometry analysis showed a pro-apoptosis rate of $63{\pm}1.6%$, which was again higher than in other groups. Conclusions: In this study we have shown that tumor necrosis factor (TNF) secreted by AD-MSCs may play an effective role in inducing B-CLL cell apoptosis.

Anti-inflammatory Activity of Sambucus Plant Bioactive Compounds against TNF-α and TRAIL as Solution to Overcome Inflammation Associated Diseases: The Insight from Bioinformatics Study

  • Putra, Wira Eka;Salma, Wa Ode;Rifa'i, Muhaimin
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2019
  • Inflammation is the crucial biological process of immune system which acts as body's defense and protective response against the injuries or infection. However, the systemic inflammation devotes the adverse effects such as multiple inflammation associated diseases. One of the best ways to treat this entity is by blocking the tumor necrosis factor alpha ($TNF-{\alpha}$) and TNF-related apoptosis-inducing ligand (TRAIL) to avoid the proinflammation cytokines production. Thus, this study aims to evaluate the potency of Sambucus bioactive compounds as anti-inflammation through in silico approach. In order to assess that, molecular docking was performed to evaluate the interaction properties between the $TNF-{\alpha}$ or TRAIL with the ligands. The 2D structure of ligands were retrieved online via PubChem and the 3D protein modeling was done by using SWISS Model. The prediction results of the study showed that caffeic acid (-6.4 kcal/mol) and homovanillic acid (-6.6 kcal/mol) have the greatest binding affinity against the $TNF-{\alpha}$ and TRAIL respectively. This evidence suggests that caffeic acid and homovanillic acid may potent as anti-inflammatory agent against the inflammation associated diseases. Finally, this study needs further examination and evaluation to validate the potency of Sambucus bioactive compounds.

Potentiation of TRAIL killing activity by multimerization through isoleucine zipper hexamerization motif

  • Han, Ji Hye;Moon, Ae Ran;Chang, Jeong Hwan;Bae, Jeehyeon;Choi, Jin Myung;Lee, Sung Haeng;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.282-287
    • /
    • 2016
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a homo-trimeric cytotoxic ligand. Several studies have demonstrated that incorporation of artificial trimerization motifs into the TRAIL protein leads to the enhancement of biological activity. Here, we show that linkage of the isoleucine zipper hexamerization motif to the N-terminus of TRAIL, referred as ILz(6):TRAIL, leads to multimerization of its trimeric form, which has higher cytotoxic activity compared to its native state. Size exclusion chromatography of ILz(6):TRAIL revealed possible existence of various forms such as trimeric, hexameric, and multimeric (possibly containing one-, two-, and multi-units of trimeric TRAIL, respectively). Increased number of multimerized ILz(6):TRAIL units corresponded with enhanced cytotoxic activity. Further, a high degree of ILz(6):TRAIL multimerization triggered rapid signaling events such as activation of caspases, tBid generation, and chromatin condensation. Taken together, these results indicate that multimerization of TRAIL significantly enhances its cytotoxic activity.

Effect of Activated Protein C (APC) on Apoptosis of Cancer Cells (종양세포의 사멸에 있어서의 activated protein C의 효과)

  • Min, Kyoung-Jin;Bae, Jong-Sup;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.697-701
    • /
    • 2012
  • Activated protein C (APC) has an anticoagulant effect and a non-hemostatic effect such as regulation of cell metastasis and modulation of inflammation. In this study, we investigated whether APC could modulate apoptosis in cancer cells. Tumor necrosis factor (TNF)-${\alpha}$, cyclohexamide, and FAS markedly induced apoptosis in human renal carcinoma Caki cells. When Caki cells were pretreated with APC, the percentage of death receptor-induced apoptosis did not change. Furthermore, we checked the effect of APC on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human glioma T98G and human breast carcinoma MDA231 cells. APC also had no effect on TRAIL-induced apoptosis in both cell lines. However, pretreatment with APC inhibited combination treatment (kahweol plus TRAIL and kahweol plus melatonin)-induced apoptosis and PARP cleavage in Caki cells. Taken together, our results suggest that APC can modulate anti-cancer therapeutic efficiency.

MDL-12330A potentiates TRAIL-induced apoptosis in gastric cancer cells through CHOP-mediated DR5 upregulation

  • Lim, Sung-Chul;Han, Song Iy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.397-405
    • /
    • 2017
  • MDL-12330A is a widely used adenylyl cyclase (AC) inhibitor that blocks AC/cAMP signaling. In this study, we demonstrated a novel antitumor activity of this drug in gastric carcinoma (GC) cell lines. In these GC cells, MDL-12330A reduced cell viability and induced cell death in a concentration-dependent manner. At a moderate concentration (${\sim}20{\mu}M$), MDL-12330A mainly induced apoptotic death whereas at concentrations greater than $20{\mu}M$, it increased non-apoptotic cell death. The induction of apoptosis was at least partially regulated by CHOP-mediated DR5 upregulation, as detected by immunoblotting and gene interference assays. More importantly, low concentrations of MDL-12330A effectively enhanced recombinant human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (rhTRAIL)-induced apoptosis and clonogenicity in these gastric cancer cells. This study demonstrates a possible role of MDL-12330A as a potential sensitizer to TRAIL, and suggests a novel therapeutic strategy targeting gastric cancer cells.

Effect of Snake Venom Toxin on Inhibition of Colorectal Cancer HT29 Cells Growth via Death Receptors Mediated Apoptosis

  • Shim, Yoon Seop;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives : We investigated whether snake venom toxin(SVT) from Vipera lebetina turanica sensitizes HT29 human epithelial colorectal cancer cells to tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) induced apoptosis in cancer cells. Methods : Cell viability assay was used to assess the inhibitory effect of TRAIL on cell growth of HT29 human colorectal cancer cells. And 6-diamidino-2-phenylindole(DAPI), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay(TUNEL) staining assay were used to evaluate cell-apoptosis. Western blot analysis were conducted to observe apoptosis related proteins and death receptor. To assess whether the synergized inhibitory effect of SVT and TRAIL on reactive oxygen species(ROS) generation was reversed by strong anti-oxidative agent. Results : SVT with TRAIL inhibited HT29 cell growth different from TRAIL alone. Consistent with cell growth inhibition, the expression of TRAIL receptors; Expression of death receptor(DR)4 and DR5 was significantly increased and intrinsic pro-apoptotic cleaved caspase-3, -9 was subsequently increased together with increase of Bax/Bcl-2 ratio and extrinsic pro-apototic caspase-8 was also activated. In addition, the expression of anti-apoptotic survival proteins, a marker of TRAIL resistance(eg, cFLIP, survivin, X-linked inhibitor of apoptosis protein(XIAP) and Bcl-2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the ROS scavenger N-acetylcysteine abolished the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the intrinsic pro-apoptotic caspase-3 and-9. Conclusion : The collective results suggest that SVT facilitates TRAIL-induced apoptosis in $HT_{29}$ human epithelial colorectal cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 and consecutive induction of bilateral apoptosis via regulating apoptosis related proteins.